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[Tex§7 An examination is mede of the propagation of vibration energy
through structural elements, mainly through rod structures, and the

- acoustic diagnosis of ball bearings is considered as well as localiza-
tion of acrustic sources.

[N

The collection is written for scien! ific and engineering-technical workers,
ACTTVIS VIBROPROTICTION SYSTEMS
M. D. Genkin, V. V. Yablonskiy

This article examines active vibroprotection systems (AVS) as controllable
systems for vibration protection and presents a classification of such
systems from different viewpoints. "

A controllable system for vibration protection is a system for automatically
controlling the vibration of a mechanical object to reduce vibration to a
: predetermined level at certain points or in a region of space, in a pre-
determined frequency band or time region for a certain class of external
actions. The obJect of control is a mechanism or attached structural unit,
the source of information is the data on the vibration state of the object,
the criterion of effectiveness of control is the magnitude of the vibration or
- some functional that characterizes the vibroactivity of the object in the
- final analysis.

As a rule, controllable vibroprotection systems (VS) require energy input

from an additional external source. These systems can be divided into
three groups (see the diagram).

1
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Clagsification of controllable and active vibroprotection systems
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Tonckosite Becnonckosble
KEY: 1--Controllable VS T--Adaptive
- 2--AVS 8--With control with respect to
3-~VS with variable parameters external perturbation
L4--vVS with variable structure 9--With dynamic coordinate control
N 5--With compensation 10~~8elf-adjusting
6--With deflection control 11--Searching
(by stabilization) 12--Non-searching

In the first group are the AVS. In these the actuating elements act
- directly on the object along with the disturbing factors. Passive parameters
usually remain unaltered.

1n the second group are VS in which the actuating devices act on passive
clements (a mass, a spring, a damper), changing their value in some way
(continuously or in steps). For instance a change takes place in the distri-
bulion of unbalanced masses (autobalancing), the mass or stiffness of a
dynamic antivibrator. When there is a fairly slow change in parameters,
the system as a whole behaves like a passive system. Rapid changes that are
= compurable in velocity to a vibrational process lead to fundamentally new
properties such as increased stability.

In the third group are V& with variable structure, where there is a change not
B only in parameters, but in the order of activation of various links.
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In systems with variable parsmeters and variable structure, energy losses
from the outside source are determined by the mechanism of action on the
parameters and structure, and do not directly involve the vibrational -
process ltself.

Practically always the active vibroprotection is provided by the combined
sction of actuating (active) and passive elements of the system. In some
cases the vibroprotective role of the passive elements is especially clear. -
For instance in the electrohydraulic vibroprotection system of Ref. 1 there

is a spring that is connected in series with a hydraulic cylinder, and the

AVS with fqree control in the shock-absorbing mechanisms of Ref. 2 also

acts only in combination with fairly pliable elastic elements. Some authors

(Ref. 3] call such systems hybrid in contrast to "purely active." We feel

that such & division is unsound since there are no "purely active" systems

(i. e. systems that are independent of passive parameters).

D. Karnopp [Ref. 4] uses the term "semi-active" for a system with an electro-
: hydraulic mechanism that changes the stiffness of an elastic suspension.
According to the classification that we propose, this is a system with
variable parameters.

In extensive use are mathematical models of AVS as systems with additional
stiffness, damping or mass introduced by feedback with respect to the corre-
sponding kinematic parameters (displacement, velocity, acceleration) [Ref.

2, 5]. On the other hand the block diagrams of passive systems are depicted -
as control systems [Ref. 6]. Obviously this gives no basis for considering

AVS a type of systems with variable parameters.

Actually the AVS, in contrast to passive systems, provides a wider choice of
reciprocel and negative inserted parameters. Moreover, the region of
constancy of a given inserted parameter is limited by the passband of the
feedback loop. Tha introduction of equivalent parameters is useful for a
more graphic representation of the effectiveness of the system in the
working frequency band, but is completely useless in stability analysis.

- AVS with control with respect to perturbation. In the theory of vibro- .
protection many versions of AVS with control with respect to perturbation
can be considered. The source of control is a signal proportional to the
perturbing factors (force or kinematic). Usually in automation, perturbations
are teken as independent of the response of the system that changes in the

_ process of regulation. Such for instance are the kinematic perturbations of
equipment on the base side, and also the vibrations of the shaft and bearings
of a spring-mounted rotor machine if the components of the AVS are on a
foundation or other supporting structural elements, i. e. they are "decoupled"
from the source. The main goal is taken as realization of a transfer function
that ensures "invariance" (independence of perturbations) of the selected
dynamic coordinates. This is open-cycle control. This requires extensive
information on the system.
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- On the basis of u given form of the continuous spectrum of random pertur-
bations and various criteria of vibroprotection, the theory of optimum
filters is used to find the optimum structure of the VS, which in a number
, of lnstances must necessarily contain active elements [Ref. 7).

Essentially different from this kind of control is vibrocompensation with
control with respect to the dynamic coordinates of the object [Ref. 2,
8-15]. These coordinates in a certain frequency range can be treated as
- external perturbations of some part of the system. An example is provided
by the dynamic forces f transmitted through elastic elements (shock absorbers)

- to the foundation of machines, or from the outside to the equipment to be
siolated. The best protection for equipment to be isolated is provided
- by applying compensating (active) forces f2 to the points of action of the

given perturbations; to do this, it is natural to use these perturbations
themselves as the control signel. Invariance in this case should be under-
stood as "decoupling" of the object from the source of vibrations. The

ideal transfer function of the control circuit is equal to f3@/f=-1, i. e.

it is frequency-independent, which is favorable for wide-band vibroprotection.

- In contrast to control with respect to external perturbations, stability

may be disrupted in a system due to feedbacks through the object. Some
versions of control can be partly or completely represented as control with
respect to deviation of a dynamic force [Ref. 14]. Stability can be improved
by using correcting circuits, filters, or combined control (with respect to
perturbation and deflection).

An AVS is proposed in Ref. 16 with control with respect to deformation of
an elastic element. This coincides with control with respect to force,
where the shock absorber is an elastic link without losses.

AVS with deflection control. This control principle is used in the over-
whelming majority of VS with electromechanical feedback that are described in
the literature, They have certain advantages: there is no requirement for
complete information on the perturbations or (to a certain extent) on the
characteristics of the equipment to be isolated since a slight change in

the latter has little effect on demping efficiency.

Ref., 17-20 deal with pgeneral studies of feedback with respect to acceleration,
velocity and displacement in simple unidirectional mechanical circuits.
Research has been done [Ref. 18, 21) on the stability and other properties

of AVS in arbitrary elastic systems and in shock-mounted objects with six
degrees of freedom.

Ref. 22-2% examine multichannel systems of electromechanical feedback with
respect to deflections as applied to rods, plates, shells and an acoustic
medium.

Many papers have been devoted to the development and theory of individual
- devices us well as to their applications. 1In Ref. 26, 27 a study is done on

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1

FOR OFFICIAL USE ONLY

electromagnetic vibrocompensators unified into a single element together
with o vecuum tube and a feedback coil (velocity sensor). Ref. 28-36 deal
with electrodynamic devices. Despite the great possibilities proved for
these devices by many authors, only laboratory models have been described.
Apparently the problem lies in the difficulties of making reliuble and
economic vibrators.
Matters are different when it comes to controllable hydraulic and pneumatic
suspensions designed for damping low-frequency actions and compensating
slowly changing loads. Playing a decisive role here on the one hand have
been the high operational relisbility and the large developed forces with
speed sufficient for quasistatic conditions (although according to the latest
data the frequency range has been increased to a few hundred hertz); on the
other hand there have been the extensive possibilities of control provided
by electromechanical sensors (there are VS with purely hydraulic control as
- well [Ref. 31]). Controllsble hydraulic and pneumatic devices have been
developed on the basis of equipment that has already been perfected, checked
out and put into wide use. The first research on electrohydraulic devices
was done in Ref. 1. In the USSR this research has been developed in Ref. T,
20, 31-33 and elsewhere. A model of a VS for a human operator has been
- made [Ref. 7], and controllable suspensions are being developed for motor
vehicles [Ref. 3L]. A special group is constituted by self-leveling elastic
supports for foundationless installation of machine tools, mainly pneumatic
(Barry Control Co., and in the Soviet Union an original design has been
worked out in Ref. 35).

In modern machines that operate on moving objects it is advisable to use
pliable vibration-damping rotor suspensions in the bearings together with

a self-leveling system (stabilization of rotor position relative to the
stator and housing). Ref. 36, 37 describe stabilizing electromagnets placed
between the stator and tearings, and controlled by a signal proportional to
deflection of the rotor or change in the load on the bearings. In view of
the low time constant, the low electromagnetic stiffness of the system and
its insensitivity to transverse displacements, it has an advantage in speed,
particularly as compared with pneumatic devices, and combines better with
elastic elements (parallel connection). Calculations show that an especially
appreciable vibration-damping effect is realized with simultaneous use of
electromagnets as controllable vibrocompensators on the vibration frequency. !
After solution of a number of engineering problems an electromagnetic system
may be used in rotor machines.

AVS with compensation and stabilization (particulars of analysis). Mainly,
we use a system of ordinary differential equations or partial differential
equations with constant coefficients and with additional terms in the second
member. In connection with the introduction of elements of automatic control
_ circuits (amplifiers, filters) there is a tendency to change to structural
methods that are common to the object and the control circuit. The Routh-
Hurwitz criterion is used to evaluate stability oniy in characteristic

lgee the article by M. D. Genkin, V. G. Yelezov, M. A. Pronina and
V. V. Yablonskiy, "Active Vibroprotection System with Control with Respect
to Low-frequency and Vibrational Perturbations" in this collection.
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equations of up to order 4. The Bode-Nyquist criterion [Ref. 22, 30] is most
widely used in more complicated cases. In Ref. 13, 14 an immitance criterion
ig used that includes impedonces determined experimentally by the same
vibrocompensators.

Most AVS are made tc ensure linear operation, and nonlinearity is treated as
a spurious eradicable effect. In systems for stabilizing quasistatic dis-
placements (including in the self-leveling supports mentioned above) the
nonlinearity of the responses of elastic and active elements is considerable
in operation on large displacements. In the system with electromagnet of
Ref. 37 the elastic elements must necessarily have a rigid response to ensure
static stability of the object in the magnetic field. We should expect

more and more extensive use of nonlinear methods for comprehensive evaluation
of operability under working conditions. A number of authors have pointed
out an improvement in stability with nonlinear operation.

Self-adjusting AVS. So far these systems have remained almost unconsidered
in the literature, even though they are obviously needed, particularly in
control with respect to perturbation in separate frequency bands, under
conditions of variable frequency and drift of the characteristics of the
controlled object.

Non-searching self-adjusting AVS. An example is a system of a fairly large
number n of controllable vibrators tha’ compensate oscillations in a girder
structural element,l or in some region of an extended plate. For instance
vibrations on a given frequency are minimized at a mean-square or maximum
level that is determined from the readings of m acceleration converters.
Under certain conditions we can limit ourselves to compensation of the
initial vibration at n points. For this purpose we measure beforehand

the natural and reciprocal compliance (matrix Y). From the vector of
initial vibration Xy we use a digital computer incorporated into the AVS

to calculate the vector of the necessary compensating (active) force

7@ = -y~ 1X,.

Since the matrix Y can be found and inverted beforehand on required fre-
quencies, n comparatively small computer unit is needed for operational
control of vibration. Non-searching systems provide the highest speed, which
is necessary when there is a considerable change of the initial vibration

in time.

Ref. 25 considers selection of the points of installation of vibrocompensators
when there is a limitation on power consumption.

Searching self-adjusting AVS. The main peculiarity of the quality function
of the vibroprotection system for a complex obJect is the presence of "local

lgee the arficle by V. A. Tikhonov and V. V. Yablonskiy, "Some Problems
of Vibrocompensation of Elastic Systems" in this collection.
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extrema,"  Therefore methods of sequential variation of dynamic test forces
ure not well sulted to searching. In Ref. 25 a computer was used to study
nomebhod of slimul taneoun ehange In wll forcen in proportlion to renidunl

- vibrablon, nnd nloo noolbmplex method for Lhe umme model (n girder). The
former method was effectlive for dumping "pure" normal modes with a surplus
of vibrators. The speed of the latter method depends considerably on the
initlal point of the search and on the dimensions of the simplex. This
simplex must be reduced during search to achieve the re juired accuracy of
control, and of course there ls a concomitant reduction of speed. The -
opeed is determined by the speed of vibration measurement on each step, and
by the setting of appropriante rated forces on the vibrators.

Considering the feasibility of making miniature self-contained computing
devices, we should consider gelf-adjusting AVS with perturbation control
the most promising for sources of vibration that are polyharmonic in nature.
No lesy Important is self-adjustment of control circuiis with feedback to
improve efficiency. -

Optimum control of damping of oscillations of elastic systems. Research on

control of oscillating elastic systems is based on L. S. Pontryagin's maximum
principle and also on dynamic programming (Bellman's principle) [Ref. 38-401]. =
[n pnrticular, an exmination was made of control of the oscillations of a

Jet, a rod and a thin plate. Typical formulution of the problem: find a

2ontrol, i. e, a systum of forces or kinematic actions applied at certain

(outside or intermediate) points of the object Lo reduce its free oscillations

to u predetermined level in the shortest time. A similar problem is formu-

lated for vibration dampers [Ref. 14]. Such a control is one of the methods

of active vibroprotection as applied to nonstationary actions, and specifi- -
cally impact actions. Practical realization of this control leads to AVS

with optimum control that appreciably surpass self-adjusting AVS in their
capabilities. Such systems have already been created for fairly slow

processes (e. =. damping of gyroscope oscillations).

Considering what has been said, let us note the major factors that are most
conducive to more extended use of AVS in technology:

1. Availability of powerful compact actuating mechanisms (hydraulic and
pneumatic) that provide the necessary dynamic and static forces in the
low-frequency range (from a few hertz to tens of hertz).

2. Low mugnitude of vibrational forces transmitted to supports, particularly :
in shock —mounted mechanisms of rotor type. This enables the use of AVS with
control with respect to force for additional reduction of vibrations. Actu-

ating elements (as a rule electromagnetic vibrators) may have small overall
dimensions and low power consumption under these conditions.

3. 'The capability for using passive vibroprotection devices (particularly
elastic links) to improve the conditions of operation of active elements
and cnhance the total effect.

7
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L. A wlde cholee of mothodu and means of control (force and vibeation tranie
ducers, umplifiers, filters, correcting cireuits), and the possibility of
making compact computers.

10.
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AN ACTIVE VIBROPROTECTION SYSTEM WITH CONTROL WITH RESPECT TO LOW-FREQUENCY
- AND VIBRATIONAL PERTURBATIONS

M. D. Genkin, V. G. Yelezov, M. A. Pronina, V. V. Yablonskiy

An cxamination is made in Ref. 1-3 of active vibroprotection systems (AVS)
with control with respect to force or strain on an elastic element that
connects the source of oscillation to the object that is to be isolated.
These systems contain individual control channels that include a force or
deformation transducer, an amplifier and an electromagnet that operates on
the object to be isclated close to the point of application of the force.

The transfer ratio of the vibrocompensation system has a constant value in
the vibration band and is close to zero in the low-frequency region. Control
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is equivalent to reducing the stiffness of the elastic
elements in the vibration band, On the other hand, the
ytabilization system ot Ref. 3 has a constant transfer
ratio on low frequencies and does not operate in the
vibration band. Control is equivalent to increasing the
stiffness of elastic elements on low frequencies. In the
first case the differential of oscillations is artificially
increased on relatively stiff shock absorbers. 1In the
second case it becomes possible to use a pliable insulating
B} mh suspension for mechanisms on moving objects under conditions
of varying misalignments, as well as inertial loads (ex-
ternal low-frequency perturbations).

# FU
On the basis of simple computational examples, this paper
investigates vibroprotection by simultaneous control in B
Fig. 1 the vibration and low-frequency perturbation bands.

Diagram of the AVS and basic equations. The mechanical system (Fig. 1)
contains mass m? excited by external force ' (source of oscillaticns), an
elastic element with complex stiffness kM(1+JAM), (A7 is the loss factor),
and also mass m" and an elastic element with complex stiffness kH(1+ j\H) --
the model of the object to be isolated -- the "load." The action of the
controlled electromagnet with frame fastened to the source (mass m") and
armature fastened to the object to be isolated (the rigid base) is depinted
in accordance with the conventional scheme [Ref. 1, 2] by two equal and
opposite active forces 3 applied to mass m" and the base.

The transfer function has the following form: -

P _ _Kpe KT o B -
T~ K' (p) “ToF - Tlp“ 1
. T3pr 420 T
Ky (p) = Kpe _ Ky (Tp* +28,7p) )

TV + 2. Tep + 4 Tt + 20, Typ 41

for RC and LCR filters respectively.

In the frequency region (p=Jjw) this function cen be transformed to the
following form (for LCR filters):

i—qyo!
— nl/g:)l + l:ﬂ‘lﬂ:
A0/0,
=i [.K" (T—avaiy + Alayal

(1 —ayal — ) ayoi
-y aaye:
ram,
+ K it A:n'/n:] '
(2)
where Q = 0/wy; wo= VEUm"; f is the force in the clastic element (control
signal); Kfc and KfK are the nominal coefficients of amplification of the

Ky (Q) = Kie i + K«

control circuit in the bands of stabilization (when 2 «1) and vibrocompen-
sation (when f »1) respectively; 2, Qy are the normalized natural
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frequencies of the low-frequency and high-frequency LCR filters; Ag, Ay are
the inductance loass factors of the filters, the reciprocals of their Q.

The forced oscillations in the AVS that operates in the object (see Fig. 1)
are described by the following system of equetions:

mu"!'n 4 k"“ + lkn) “ + K]) (xn __xu) o f“. ‘ (3) 0
mu:\:u + gt (1 o+ }kn) “ o+ K{) (-\,n — .\,n) o Iz “ 4 ﬁ‘") [La- 0'

- where ["== foolt; x == yel!+9), and the transfer ratio of the control circuit Kp
is defined by expression (1).

We evaluate the effectiveness of vibration demping as usual on the basis of
the coefficlent A(Q) = £/f" of transfer of force to the rigid base via an

- elastic element in a system with one degree of freedom. It is natural to take
the measure of effectiveness of active vibration damping as the absolute
value of the ratio of frequency responses |A(R)/A2(Q)| of the passive and
active systems in the vibration frequency band. For a system of wide-band
vibrocompensation [Ref. 1] when 2 » 1 (considerably sbove resonance) the
effectiveness is equal to

|A1AY| = By = |Fulfowea| = 1104 — Kpo) | )

where kg is the complex stiffness of the system without control ("regular"
stit‘fg_es_s) that ensures resistance to low-frequency oscillations, and
Eoa =R,y (1 — Kjx) 1is the equivalent stiffness in the vibration band.

We evaluate the effectiveness of stabilization from the reduction in dis-
placements of the mass or deformations of the spring caused by the low-
frequency actions (when Q«1). The effectiveness can be expressed as

Bc = ,if-mn/’?I =1 -+ K[c, A (5)
where K is the complex stiffness of the system without control, which is
taken as clearly lower than the "regular" stiffness, and therefore, generally
speaking, does not ensure stability to low-frequency perturbations;

Two =R (1 + K;) is the equivalent stiffness in the low-frequency band.

The effectiveness of vibration damping with an AVS having control of both
types can be expressed by the quantity

Bl + K B — K= (1 + Kidl(t — Kpe)y (6)

i. e. ns the product of expressions (4) and (5). Stabilization should
ensure the required stiffness on low frequencies, i, e. the equality

1B + Kpe) == | ko|- M
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B Vibrocompensublon munt enmure Lhe minlmum equivalent nbl ' rnenn ﬁx 1 - K,w‘) tn
Lhe frequency band ol vibratlon bhab Ly permivslble with the exlating con-

p stralnts In the low-frequency band. Assuming condition (7), equation (6)
characterizes the effectiveness of this AVS us compared with the "regular"
passive vibration damper (with stiffness k).

Duality of the two control eystems. Let zy, zp be the impedances of the

arms of the simplest L-shaped low-frequency or high-frequency filter (LFF and
HFF). 1If 21/(z) +23) is the transfer function of the HFF, then 2p/(z) +2y)
is the transfer funetion of the LFF with the same elements but connected in
reverse order., In accordance with expression (1), the equivalent stiffness
k(1 +Kg) that appears in equations (3) can be expressed and transformed as
follows:

for vibrocompensation:

i o = B (1 = i) B = Kp) (1o e 20, )

HYE =Ky utn
for stubilization

N n | s K{ 2
o= B{1 i) =R+ K0 (1= i) O

Comparing expressions (8) and (9) we find that the AVS with compensation is
equivalent to a stabilizing AVS in which the stiffness of the elastic element
is equal to k(1 -Kgy), while the transfer ratio in the low-frequency region
is Kpy/(1=-Kpy); the AVS with stabilization is equivalent to a_compensating
AVS in which the stiffness of the elastic element is equal to k(1 +Kgg),
while the transfer ratio in the vibration band is Kpo/(1+Kes). This enables
- us to investigate stabilizing systems by methods presented in Ref. 1, 2, but
with consideration of the dependence of the stiffness of the equivalent
elastic element on the transfer ratio Kpq.

Both kinds of control can also be represented in a form such as vibrocom-
pensation

o~ - 2, 2
kyn = & (i 1 Kie Zlci’zc - K"‘ LT "l"‘ Z.w) =

TN Krpe %e K,,(' Z1x
-E (14 ch)(1 T T — T _H"), (10)

where zj., zjy are the elements of two different filters (LFF and HFF in the
initial expression, HFF in the final expression). The equivalent transfer
ratio (last two terms) has a "two-step" frequency response.

Expression (10) implies directly that if the limiting frequencies are suf-
ficiently separated, the controls can be treated separately, each in its

own band. Frequency separation is useful for reducing the mutual influence
of frequency distortions, and also for getting eway from resonant frequencies.
If on the other hand the limiting frequencies are equal and in this connection
the elements of filters zjc and zyy are identical, the equivalent control

hai the simplest form

1b
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B e B . K,l' | Klu 2

o = e (1] '<f«>(*-m,rm)»
that 1s analogous to AVS that have already been studied with a single HFF in
the control channel.

Object with one degree of freedom and aperiodic links, As m'-+« (massive
obJect to be isolated) the motion of the system is described by a single
equation'(we consider viscous friction):

L
U A 26 (1 ) EY R e K A s [, 28 = Awg/ = const.

In the case of control of form (1) with aperiodic links in both channels,

& characteristic polynomial of fourth order is obtained. Let the initial
system relative to which the effectiveness is calculated have stiffness k@

and natural frequency wg. Assigning fixed values of 28, Tgy Ty (in dimension-
less form), we will vary the stiffness kP and frequency wg of the object,

each time selecting the value of Kpo in sccordance with the equality .

kM(1 +Kee) =kfl, thus ensuring the same resistance ¢ low-frequency pertur-
bations as in the initial system. Using the Routh-Hurwitz criterion, we find
the value of Key on the boundary of stability. The results of calculation of
- effectiveness B according to (6) are summarized in Table 1.

) TABLE 1
) we Te Ty Kpe Kix B, 2B
{ .- 0,05 0 0,83 5,9
0,75 0,1 0,05 0,79 0,73 6,6
0,5 0,1 0,05 3 0,21 5.5
NOTE: anB=4dr

These data show that combined control gives a greater effect than each form
of control separately.

Object with two degrees of freedom and oscillatory links (LCR filters).

The conditions of greatest effectiveness of an AVS in an object with two
degrees of freedom were investigated in accordance with system of equations
(3) and control characteristic (2). With consideration of stability require-
ments and vibration demping requirements, the values of s, QU were chosen
in a range of 0.5-5. The problem of obtaining the maximum value of B was
formulated. An investigation of this kind was done for shock-mounted mecha-
nisms in which the suspensions must not be noticeably deformed over a rela-
tively wide range of low-frequency perturbations 2=0-0.5 (i. e. up to half
of the resonant frequency), while vibration damping must be effective in the
range of 2> 5. The ratio a"M=p"/mH=0.01 and partial frequency Q=

—_ VW;TIT/(%= 100 correspond to a massive and rigid foundation.
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The Nyquist stubility conditions as applied to the function of the reciprocal
relotion [Ref. 4] had the following form:
ReT (jQ) = ([ Re Ky () (b — A"A) — Im Kp(S0) (V" -+ b))} (b — -
. AN = Q) 4 [Re Kp (Q) (A" 4- b))
i o+ I Ky () (b = MW" - Ao — QAW+ L
A Ab; — QI (b — A" — Qla > —1, (11)
where g =1 —Q}Q% b= 1—(1 + QR ReK;(Q), ImK, Q) are the

values of the real and imaginary parts of the transfer ratio of the control
circuit on frequency Q43 @4 is the i-th root of the equation

[Re Ky (R) (M 4+ Ab) + Im K;(©) (b — A"A)) (b — A"\ — Q8a) —
~ [Re K1 (Q) (b — A"A) — Im K (Q)(Q" 4 AW (A" - Ab —
— 00 =0, (12)
- a=1—-Q4Q% b=1—(1+auwQVRk -
In solving the optimization problem, the input parameters were taken as ’

gy Aoy s Ans Kfos Kew, 1. e. those parameters of the control circuit that
are at the disposal of the designer.

Ac a result of investigation of the six- 1Al i
dimensional space (Kpg, Keys Ags Axs fgs ) T T TE
by the method of global linear programming 27 ’
search with subsequent gradient descent from P ‘\
the 5-10 sets with greatest values of B, the
sets of parameters are found for which B has (\ix}; . \
the greatest value, satisfying conditions 25 anid
(11), (12). The sets that are best in the & 5. }
given sense for A =0.1 and 0.25 are given in ,/,-J\ ?
Table 2, where the sets with the highest value N
of B in each column are found after gradient a7
descent, aad correspond to the extremum value

- of B. Plotted in Fig. 2 are the regions of
stability (on the side with shading) in the ‘
Kgc-Kew plane for the optimum sets that cor- e/ Y
respond to the maximum value of B at different A.

il

£
ki

24 as 1A
- The curves in Fig. 2 show the monotonic nature rd

of the rcduction in B with deviation of Kgg Fig, 2
and Key from the optimum values shown on the

- curve by asterisks. For each of the points indicated on the boundary, the
numbers show the corresponding values of the degree of damping B and the
critical frequency of self-excitation of the system QKp' The change in ﬂKp
alony, both boundaries is also monotoniec.

A comparison of the effectiveness of the versions of AVS considered in Ref. =
1-3 with that provided by the given AVS (assuming optimum parameters of its
control circuit) shows that the vibration damping effect with combined
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TABLE 2
8, ab Kye M Qkp A L™ Q¢ [
B A=01
-— 0,09 0,34 0,88 0,84 3,79 2,52 0,53
- T 105 |03 | 44 | 05 | 392 | as | o
A=0,25
~ | 037 | 052 | 08 | 08 | 3,70 | 252 | 053
_ 16 0,685 0,74 1,01 0,5 0,39 2,68 0,5

- NOTE: anb=dB

control is 5 dB higher on the average than with control in the band of low-
frequency perturbations or in the vibration band.
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SOME PROBLEMS OF VIBROCOMPENSATION OF ELASTIC SYSTEMS
V. A. Tikhonov, V. V. Yablonskiy
The use of additional sources of vibration energy (vibrators) in different

- fields of technology as elements of an active vibroprotection system leads
to expansion of the possibilities of facilities for passive vibration damping
of elastic structures. The problem of selecting a law of additional exci-
tation to reduce the resultant vibration and noise of wachines and mechanisms

is basic in this regard, and is solved in different ways. Ref. 1, 2 describe
vibration control that is accomplished by a system of automatic force control
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and regulation with respect to deviation with electromechanical feedback.
However, the frequency band of regulation is considerably limited by the
conditions of stability of automatic control in a closed arrangement.

Problems of stability are not decisive when adaptive systems with optimzlizing
control are used in an open arrangement. Self-contained control of vibrators
by optimizer-computing devices assumes assignment of an algorithm of adaptive
search for the extremum state of the object. The theory of possible optimum
control in this case has not been adequately developed. The solution with
respect to L. S. Pontryagin's meximum principle for simple elastic systems

has either not been found in explicit form [Ref. 3] or else requires a con-
siderable volume of mathematical operations with a relatively simple model

for realization [Ref. 4, 5]. In Ref. 6 the law of excitation of vibration
sources is determined with respect to energy efficiency although the resultant
solution may also be non-optimum in the generally accepted sense. The
integral condition of finding the solution enables us to find effective
compensation of the given field of vibrations only in local zones of the
control object. The question of the minimum necessary number of discrete
vibration sources remains open.

This article gives the results of computer modeling of some algorithms of
vibrocompensation in linear elastic systems. Estimates are made on the
necessary number of vibrators depending on the given "complexity" of the
initial vibration field and the required compensation effectiveness. The
possibility of force control by a reduced number of vibrators is discussed.

Formulation of the problem. Let the motion of the elastic system be described
by a system of equations of the form

Lot + Lo + Lu® = F°. (1)

Here u®(t,x,y,z) is the vector function of spatial displacement of a point;
Fe(t,x,y,z) = {f}, £%,..., f&} is the vector function that assigns the dis-
tribution of forces from the controlling vibrators; Ly, Ln, Lg are linear
symmetric differential operators with given boundary conditions; Ly, Lp

are gradients of the quadratic functional of kinetic energy and potential
energy of elastic deformation respectively; Lg is a dissipative operator that
is taken as equal to Lp=uLnd/8t for internal friction in the material.

We will take the forces F& as controlling forces, the function F&(t,x,y,z)

on time segment [tg,ty] being a piecewise-continuous function of time and
coordinates defined in the region of permissible controls: F2€ Dy,

We write the criterion of quality of vibration control as

QFY) = ux (F) =], . @
where the norm is taken in a functional Hilbert space in which the energy
scalar product is given; u" is the given distribution of vibration at time tg.

In contrast to Ref. 4, the quality function here depends impliciily on the
controlling forces.
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The problem of optimum control of vibration is formulated os follows. Among
all the admissible controls F&e Dy that transform the elastic system from
the given initial state u® to the required final state u&-uﬂ, it is necessary
to find the one such that

- . Q (F‘) = min,

FteD)

YRR

After selecting as the initial state of the system one such that the sources
of forces '@ are disconnected, the control with vibrocompensation is reduced
to minimization of the norm of the resultant vibration, i. e. from the
mathematical standpoint to determination of the minimum mean-square deviation
- in the case of linear oscillations [Ref. 7] for the vibration field excited

by the controlling forces away from the initisl field excited by some unknown
load F.

An important class of vibration controls is harmonic control, which is often
reslized in practice. It is easy to show that in the general case this
control is not optimum (with respect to the condition in Ref. 3). For
instance for a girder of fixed cross section the optimum control found in
Ref. 4 would be

i
- ) one (6 %) = W"(’v X),

where v(t,x) is the solution of the homogeneous equation of flexural oscil-
lations of a girder with the corresponding boundary conditions, and condition

U (fy X) = (2a/m) [u® (tx, X) — u).

Here y and o are the parameters of the quality functional; m is the linear
mass of the girder.

Expansion of the solution in a Fourier time series leads to an expression for
- the control in the form

Fone(ty X) = 2% 2 (Cicos wyt + Dy sin wyt) X;(x),
1

where wj are eigenvalues; X;j(x) is the eigenform of the initial boundary value
problem, and the coefficients C; and D; in the general case are not equal
and do not vanish independently.

Restricting the class of admissible controls, let us formulate the problem
of minimizing the quality function with harmonic control depending on the
distribution and magnitude of forces f&. Let us consider motion of a system
in the class of harmonic oscillations with frequency w, and controlling
force:s as quasistationary harmonics of the same frequency, but with different
amplitude and phase on finite time intervals (transient processes are excluded
from consideration): where x0,
x¥, ' arc complex functions of coordinates. Then, eliminating the time term .
in (1)

(1 4+ JA) Lo — 0Ly ) x* = f°, _ &)
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- where A is the loss factor (taken as frequency-independent), we can get
the expression x®=K(f8%) (K is the influence function). It is required to
minimize quality function (2), which we write for instance for one-dimensional
syvtems (Fig. 1) as

1 .
o =[SIe@—nePra] | )
Q
or with respect to the criterion of the maximum of the modulus
Qs = mlaxl.\:° & — 2] (5)

Here £ is the dimensionless coordinate

. 4

T LrEeTi WLNAWL TITeNI el

7
Tle

Fig. 1

- Lstimation of the required number of vibrators. Let us determine the number n
n .
of vibrators as sources of concentrated controlling forces f*= Zf?a(g_g,),
=1

arbitrarily distributed with respect to length (area) such that with proper

selection of the magnitudes of forces £, the norm of the function of the

resultent vibration distribution [QI*= (¥ —x?, x* —x*) = x° — x*||* differs
from the norm of the initial distribution function[Q{I® = (x7, x%) = || £°||* by no
) more than a set number of times (or by B decibels):
201g(Qu/Q) < By,
or
(QIQIP 107" = By, . )

Expanding 8ll functions appearing in (3) in a series with respect to eigen-
functions Xg (=1, 2,...) of a homogeneous operator with corresponding
boundary conditions, and using the condition of orthonormalization with
respect to kinetic energy

(kalv Xm) = 5llm lv m= 1; 2v veey (7)
where 6Zm is the Kronecker delta, we get the relations
- oF) =JaXi®  Bi=pll L+ Mo} — ol - ®
1
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Here f; and py are the coerficlents of expansioh of the funetions x% and o
. renpectively, wz ure the nutural frequencies; Ly 18 the operation of multi=
pliention by thee fanelion,

With conslderution of' ('t} und (8) we have -
Q31 = (3] @ =B Xn § (= B X,) =
[] s
= D= B = B (X X = 3o =Pl =
[]

52 |14+ M) 0f = w?) @, == 5y 8
T |0+ Mo -t

where fiy =py/Ly,.

Without loss of generality, let us set [QP==||®|P=1, 'hen for systems
with Ly = const we get

~ n
p= I, X)) = 121 Fex, (&)
and inequality (6) tekes the form -
11+ 1A) 0} == ¥} 0y = '2 frx e
]

= (0} = w2 - At < B o

ipgs

Having 2n arbitrary variants in the choice of amplitude and phase of tha
controlling forces, we determine the latter from the system of equations

2T @ =10+ i) of = oy (10)

liere the subscript ! may represent an arbitrary set of n compensated modes.
Ther the residual sum is estimated by the inequality

Jhxe) P
!t

—_— i B 11
e (l+[?.)w,’-—m1|\ 1 (11)

and characterizes the necessity of minimizing the work of the controlling
forces on displacements of the component modes of order higher than n.

L

In n one-dimensional elastic system let n vibrational mode be excited on
frequency w that has no more than r nodes (points of inflection) with approxi-
mation by the polynominl

O, k) = 1§ X ()

in virtue of the fact that the system of eigenfunctions is a Chebyshev system.
'The mean-square approximation theory implies that with reference to (11) it is
necessury to select the points of application and magnitude of P2(g) so that

the function of best approximation xB{£) in the sense of mean square deviation
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from x°(6) is orthogonal to modes with number greater than n, If uniform
approximation of the functions x& to x0 ig required, the formulated problem
can be reduced to a problem of interpolation. "The values of the amplitude
and phase of the forces f{ (2n values) are selected so that the resultant
vibrations at the n points vanish:

(= gy =0 k=2,

or, substituting the expansions with respect to eigenfunctions

o 2’ xl(q)
;mx;(m Zm(lhk)m' Xi@) =0

{2a]
we arrive at the equivalent problem of resolution of system of equations (10).
Then we can use existing estimates of the error of interpolation by Chebyshev

polynominls [Ref. 7], ‘'Then with uniform approximation by power-law poly-
nomials we get the estimate

[ X0 (]) = La(B)] < Mua/22 (n -+ 1)1,

where the L,(£) are lLagrange polynomials of order nj the interpolation points
are selected us roots of the Chebyshev polynomial

M,.u = sup | u,xﬁ'”n (&) I'
teto, i

Requiring that the square of the maximum error not exceed a predetermined
degree of compensation, we get an estimate of the form

B} (Man/ 2 (n 4 DIP < Bia] 2O

_ In the case of uniform approximation in the class of trigonometric eigen=-
functions, the least deviation from trigonometric polynomials Hp(T) conforms
to the estimate [Ref. T7]:

| 2 (®) — Ta(§)| < CM/270.

Here M iu the Lipschitz factor:

|20 (80 — 20 F)| < MG =3

C iu an nbuolute constant defined as

n'q
2 sln‘E
P —df
(’" +§ ) ___3a"{in2 4 Ci(a) - Ci (21}
C = TB N4 o252 ) —Si ()]} °

sind £
T

By nnalogy with the preceding we get an estimete of the form
ICMi2an)? < Bia| O
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in the euwse of wurblteary elgenfunctions we make reference to relation (11),
which we slmpllty with consideration of the constraints on the controls:
THES F;m(:, =1,2,.,n, Using the notution

G, = Sl'lpl§| Texie),

and considering that for beam funetions | X, (§)] <% and G, 8nF4/2, we have
the inequality

o
G, '3::“ [(wf = w?)? -} M) & By, (12)
Numerical analysis was done with respect to expression (12) transformed for
vibroaccelerations:
)
2, B = 11t 4 & G078, (12a)

llere we usne the notation (B1)“ =m}‘:/w2 and agsume that B ﬁﬂ(mo/m)Lé when
A=0,05 und wp/w=0,028, the frequency of forced oscillations being between
the rirst and second natural frequencies. The residual sum of the series
reduced to 200 terms as a funetion of the parsmeter B is shewn in Fig. 2
(20 terms of the weries are sufficient for B=0.526). With an incremse in
the frequency of excitation w. a reduction in stiffness or an increase in
the inertness of the system, i. e. with a reduction in the parameter B, a
moment arrives when condition (12a) cannot be satisfied and thus achieve
some compensation of vibrations.

S

2ol
Snr,ilo) 1) 65 /ms
Ldl 1 PP
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™
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47
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Fig. 3

An investipation was made of the feasibility of replacing the residual sum
by an improper integral which, with accuracy to terms of no more than the
second order of smallness of the loss factor A is equal to
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I(Il)n S‘ dx = i %(3 4 Y
3, FE= TR m’“"(”"ﬁ‘? 3 ( gt uz’»)+

4 Pl i 7 .
. N e 1) 20 (0 s 1)
4 (T+Tiz'v)'"(n-i-i)i+2n(::+i)+: +
_‘,_i’_ll,("_+1)’r‘2h(n+l)+t
A (n+;)=+2g(n+l)+c -
_la(3+7+ﬁl’) when(n+1)'>c]
. . 0 when(n - 18 e '
- R A i
a T(l"“ 32"})0 b“"m“) c==a‘+b‘=~-5-,-(i+-§'-).

Calculations show that for > Y, a uniform increase is observed in the
value of the integral over the residual sum (Fig. 3).

Let us note that depending on the number of the mode to be compensated
n ) .
G = sup 3 FEXI®) 1 4 M0} = ulur
=

The graph for the dependence of G}/aj = [(Bu)t — [J2on n is plotted (see Fig. 3)
80 that the product of the value of the given expression multiplied by Sh41 OF
I(n) for identical coordinates is equal to unity. Then to determine the
number of vibrators necessary for compensation of r harmonics with a given
degree of damping B, a segment B must be laid off downward from the point

on the curve of G3/a3 with abscissa r, and the nearest point (on the in-
creasing side) with abscissa equal to the integer n must be found from the
corresponding ordinate on the curve of S,y or I(n)., On Fig. 3 the moves are
shown by the points a-b-c-d.

The resultant estimates are easily generalized to two-dimensional systems.
For instance in the case of small flexural oscillations of a thin elastic
plate, we have in (3)

A m
Ly=DAA, Ly=ph, [*G& )= N3 PAE—EVSin—n,),
(=1 R=t

where D is cylindrical stiffness; AA is the Laplace operator in dimensionless
csoordinates § and n; ph is mass density.

Then, repeating the preceding considerations for the system of eigenfunctions
X7y orthonormalized with respect to a pair of indices, we arrive at an
estimate of the form

e

nom
{3} +”v)‘°?~," «?) My — z E f}‘,X,.,(&i. R
Pl Re2] < Bu-
(o)';'v — )2 4 Aot

D2e

1
<
1
=
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Let o vibrational mode be set up in the plate with r nodes relative to
coordinate £ and 8 nodes relative to coordinate n. 'Then after determining
the amplitude and phase of the forces from the gystem of equations

A m
r-%h@; [AXiy@on) =10 4 Moy =wtay  (T=1,200m y=12...,m)

under conditions that n>r and m>s it is necessary to check satisfaction of
the inequalities

n m
0 o ,'21 hz'lfaxw(in )
(M ofy— v
. Relation (13), as in the case of a one-dimensional system, is the condition
of minimizing the work of all forces f?k located at the points of intersection

of a rectangular nxm grid on generalized displacements of modes of higher
order than those characterized by the pair of numbers n and m.

< B 13)
lmn g ymmgd

Control modeling with respect to the influence matrix. Vibrocompensation in
8 linear elastic system assumes selection of a control F8 such thas it sets
up a mode close to the given x°, but opposite in sign, 1. e. the limiting
condition

(X4 X =2 XOP,

must be satisfied, where Foem {fli k=1,2,...,0) Xo={xl} i=12,...,m}h
(X0} = (X3).

To determine the required vector of controlling forces, we will start from
the limiting case where X8 -%X0=0, i, e, the case of total compensation of
vibrations. Then we determine F& from the equation

AF* = X0, ' (14)

Here A=fan, {=1,2,...,m k=12...,n) is a matrix (in the general case
an operator - function) that in the case of harmonic osecillations is obtained
as a result of formal multiplication of the elements of the influence matrix X
by -w¥; the dots over the acceleration vector %0 are a symbolic designation
for amplitude (hereafter they will be omitted).

When the dimensionality of vectors X® and F& coineides, i. e. the number of
points of observation is equal to the number of points of unidirectional
discrete control (m=n), matrix equation (14) may have a unique solution
for det A#0 and matrix rank equal to n. Usually the number of vibro-
ncceleration pickups installed to monitor the uniformity of compensation
exceeds the number of vibrators (m>n). In the general case the system of
equations may be mutually exclusive.

25
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Let us formulate the problem as follows. It is required to seleect a Vector F&
such that some &1 the equations of system (14) are satisfied identically, and
the error of satlufuction of the remaining cquations is determined by the

- condition of minimization of quality function (h)., One ean find an approxi-
mate solution of the entire system of equations by the method of mean squares.

Assuming that the rank of the matrix A and of the expunded matrix after the
appropriate selection of points is equal to n, we write system of equations
(1k) in the form

‘g‘ d“gT: =t x,°~n {in k=1, 2’ G n)eE (200 m), (1ha)
X = = 'é‘at,f:. () = (1,200 mIN(iA) (14b)

Selection of points {i)} == the points where the function of the resultant
distribution of vibration vanishes =~ is arbitrary and is determined by the
requirements of existence of a solution of equation {lha) and construction
of the best approximation of x& to 0,

Modeling wus done with application to a foundation for the shock-mounted
object that consisted of two identical girders oscillating in phase. The
Initial vibration field was assigned either as an individual or mixed normal
mode of flexural oscillations of a girder fixed ani supported at the ends,
or else as the result of action of a systen of concentrated forces on the
gshock-absorber side. The elements of the matrix were calculated for these
cases by approximate computation of infinite sums of the form

=X, (5) X, (6 1% g2..m
an‘=2 ﬂll(ll-i-n‘k) p=g i=b "
kﬂiz,--tvnv

and also in closed form in terms of Krylov functions of a complex arguemnt

A = X @) frasgpay = CueS () + Cog T (68 + Caol (k) +
FCV k) = wV [ = 8], = (B + A,
p‘ = “’zdm"
llere the constants & -qu were found for each segment by solving the corre-
sponding boundary value problem.

A model was constructed for compensation of individual normal modes of the
glrders supported and fixed at the ends (see Fig. 1):

~ sinB,E shf,g a
X®=<mp—wp - BeTUEY,
r
und for mixed modes: xf== 3 &X,(&). A preliminary investigation was made
e

of the surface of the quality function with respect to the two previously
indicated criteria, preference being given among step-by-step search methods
to purallel change of coordinates with a variable step
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AF* = (AReTS « Xt AlmTY = AGE) k=1,2,...,n).

Some results of compensation of individunl modes are shown in Plg, 4-6. _On
Plg, b the axls of abascissng refleets the step=by-step change in forces 2,
and the Roman numerals indiente: I==the method of influenee coefficients;
[f=~step-by-otep search. A "gully" structure of the surface of the quality
function is observed, i. e. there is n sharp minimum of & function of many
variables, the degree of sharpness of the minimum on the surface inereasing
with a reduction of the number r of the mode and an inerease in the number n
of vibrators. The latter leads to a case of a poorly conditioned matrix A
and an unstable solution I close to the global minimum of the quality

funetion.
% &
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Fig. 7

74
The necessary number of uniformly arranged vibrators for the given degree of
compensation of different modes is found from Fig. 5, 6, which corresponds
to the previously given estimates. The following versions are considered in
Fig. 5 for the case n=5: a--r=3, b=-r=U, c~-r=5, d--r=6. The white
circles denote points of installation of vibrators, the black circles denote
points of observation.

The degree of compensation is shown as a function of the frequency of exci-
tation in Fig. 7, where the first natural frequencies are shown on the axis
of abscissas.. On resonant frequencies and close to them an intense rise is
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observed in the degree of compensation of the corresponding resonant mode,

and o drop for remaining modes. With an increase in frequency it is mainly
higher harmonics that are excited, which leads to n reduction in the level

of' compensution since the latter reflects the fraction of higher uncompehsated
modes in the resultant vibration field. ‘'This explaing the existence of a
limiting frequency above which By changes sign, which corresponds to excess
excitation,

Foree control by a reduced number of vibrators. The conventional method of
vibrocompensation [Ref. 1] is based on connecting a single vibrator (or more
to correspond in number to the components of the excitation force that are
to be compensated) in the feedback eircuit under each shock absorber, the
force being developed by the vibrator ?ﬁ being close in magnitude to thut
transmitted by the shock absorber, and opposite in phase: ffle=fi. 'Thus the
system of compensating forces in the given case exactly reproduces the system
of disturbing forces, which is ensured by setting the corresponding transfer
ratio of the feedback cirecuit. However, in the case of a large number of
shock nbsorbers the control system becomes too cumbersome. In particular,
the number of vibrators may be much greater than the number n necessary for
damping vibration of a given degree of "complexity." An investigation was
made of compensation with a considerable (2-3 times) reduction in the number
of vibrocompensators and retention of the same principles of control.

A computer was used to model the second method of assigning the initial
field of vibrations: an examination was made of the result of exceitation of
8 girder structural element by a system of concentrated forces transmitted
to the foundation from the shock-absorber side. fThe forces of excitation
were recalculated from the curve of vibrations (having two inflection points)
token from experimental data. An exact solution was used to calculate
matrix A. It was found that the resultant initial mode is close to the

first normal mode for a girder with wg/w=0.117.

In the case of force control by a smaller number of vibrators than the number
of shock absorbers, the latter are connected in groups of adjacent shock
absorbers with close values of the amplitudes and phases of the forces trans-
mitted to the foundation. Corresponding to each group of adjacent shock
absorbers is a single vibrator located in the middle of the group arrangement ,
and the control law is determined from the rule

“:=-—(7—‘._,‘—'+f'.+-7‘24‘).

if the groups intersect, i. e. the same shock absorber belongs to neighboring
groups and is "served" by two vibrators, and

‘f:‘: "‘Efllp
1f the groups are independent.

The solution with respect to a predetermined sum vector of the controlling
force was compared with the solution by the method of influence coefficients.
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It was assumed that 13 shock absorbers uniformly spaced lengthwise of the
girder are broken down into groups of 2=k, depending on the number of
vibrators., The results are summarized in the table.

Jﬁzno Meron xoa‘»%)mu«m BAHNHKA Vnp‘unlme o enae
suBparopos #
By, A By, AB th, ab By, ab
8 1,6 89,1 38,5 38,5
’ 8 06,6 62,8 21,1 29,1
5 82,8 .7 21,0 21,9
4 54,9 50,7 20,4 20,3

KEY: le=number of vibrators n
2--method of influence coefficlents
3-~force control
nB = dB

Vibration control using an influence matrix provides a high degree of compen-
sation, but this involves a larger number of vibrators than required in the
case of an initisl mode close to the first. The difference between the
calculated vectors of controlling forces and those that are preassigned has
a considerable effect with increasing n. 'The weak dependence of compensation
on the number of vibrators in force control can be attributed to the need

for more exact assignment of the forces of control with increasing n in view
of the development of "gullying" of the surface of the quality function.

Thus for linear elastic systems whose natural frequencies are considerably
higher than the excitation frequancy, high effectiveness of vibrocompensation
can be achieved by grouping adjacent shock absorbers with little difference
in amplitude and phase within the limits of the group, and by controlling
vibration on the foundation with respect to the sum vector of the force.

The number of vibrocompensators can be reduced to a minimum by calculating
the controlling forces from an influence matrix.
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WAVE PROPAGATION OVER THIN-WALLED RODS
Yu. I. Bobrovnitskiy, M. D. Genkin

One of the difficult problems of mechanics is the study of oscillations of
uniform rods of arbitrary cross section. Within the framework of the linear
theory of elasticity exact solutions have been found only for an elastic
cylinder and a layer [Ref. 1]. The Pochhammer-Chree and Rayleigh-Lamb
dispersion equations of normal waves in these structures had been derived in
the lust century, and have been extensively studied. These solutions have
played a special part in the construction of simplified theories of ecalcu-
lation. The exact solution is the standard by which the approximation given
by any engineering theory is evaluated.

Oscillations of strip-rods have also been fairly completely studied {[Ref. 2].
The accuracy of the results found for a strip is lower than for a cylinder
or a layer, and is given by the inequality

A2 » (2n)2, (1)

where Ay 1s the wavelength of a shear wave in the material: 2h is the thick-
ness of the strip. The frequency band in which this inequality is satisfied
defines the limits of applicability of the Germain-Lagrange equation of
flexural oscillations of a thin plate and the dynamic equations of the plane
stressed state that describe longitudinal-transverse oscillations of a strip
[Rer. 3]. Nevertheless, this frequency band considerably exceeds the range
of applicability of engineering theories that are valid when

Ay » 2H, (2)
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where 2l is the width of the strip (transverse dimensions of the rod), This
clrcumstance permits us to use the solutions for a strip In the same way as n
standard in comparative analysis of different approximate theories [Ref. U],

The theory of thin elastic shells [Ref. %] also has approximately the same
aecurncy. Since thin-walled rods are eylindrieal thin shells, fairly exact
solutions ean be found for them (e. g. Ref. 5, 6) that considerably simplify
the construction of simpler models [Ref. 7].

However, for rods made up of strips the results of the theory of thin shells
are not applicable because of the presence of corner joints. At present
such rods are caleculated exclusively by approximate methods [Ref. 4, 8, 9)
with accuracy bounded by inequality (2).

This article presents a theory of wave propagation over thin-walled rods
formed by Joining seversl thin strips, i. e. over rods with profiles that
are made of straight-line segments. The theory accounts for all forms of
motion of the strips, and it is assumed that the Germain-Lagrange equation is
valid for their flexural oscillations, while the longitudinal-transverse
oscillations of the strips are described by dynamic equations of the plane
stressed state. ‘Thus the limits of applicability of the results are de-
termined by inequality (1). Moreover, longitudinal bending is disregarded.
Dispersion equations of various types of normal waves are derived for rods

of the most widely used cross sections (I-beam, angle iron and so on), and

un investigation is made of the general properties of the resultant equations.

The method to be used for calculation is a generalization of the conventional
method of dynamic stiffnesses, and is fairly clearly outlined in Ref. 10, 11.
In brief, i%s essence reduces to the following. When a normal wave of the
form u(£,n) exp (ikx - iwt) propagates over a rod, where k is the constant

of propagation of the wave with respect to the longitudinal coordinate x,
u(£,n) is the displacement vector that depends on the transverse coordinates
£ and n, forces and moments of forces of reaction arise on the lines of
Joining of the strips that are also exponentially dependent on x. By breaking
the rod down into separate strips and substituting these forces and moments
for the interaction of these strips, the initial problem can be reduced to
several problems on forced oscillations of the strips under the action of
forces and torques that are exponentially distributed along the edges.

As shown in Ref. 10, the solutions of these problems can be written in a
compact form that is convenient for further computations. This can be
achicved by means of the concept of linear dynamic stiffness which is the
ratio of the linear density of force (torque) to displacement (angle of tuin)
when they are exponentially dependent on the coordinate along the line of
application of the force (moment). The junction of such solutions along

the lines of their Joining leads to dispersion equations of normal waves in
the given thin-walled rod.

1. An elastic strip as an element of a thin-walled rod. The linear dynamic
stiffnesses of the strip that are needed for further calculations can be
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obtulned by solving the homogeneous equations of the plane stressed state
und Ocrmain-Lngrnnge equations when exponentially distributed forces and
torques dct on the edgen of the strip. Sore of these quantities were calcu-
lated in Ref, 10. Derivation of the others is analogous, and therefore we
glve here only the final resuits.

The folldwing right-handed orthogonal system is chosen for the strip: the
x-axls is directed along the strip and coinecides with its middle line, the
y-axis also lies in the plane of the strip, and the z-axis is normal to the
strip. The thickness of the strip is equal to 2h, and the width is 2H. 'The
characteristics of the material of the strip: E, v are the Young modulus
and Poisson ratio, By =E/(1-v2), E; =E/2/(1+v) are the longltudinal and
shear modull of a thin plate,

The following expressions can be obtained for the linear dynamiec bending
stiffnesses of the strip:

symmetric excitation

Blel = D"c/Habcl Bfa = - B&l b Dc\'/H,'Sco Bfm = DVCIHGN

| BS| += D% o/H16:, 3)
antloymmetric excitation

Bl DOJH S~ Bl = = By v DeyfHib, Bl = Dy, JHS,,

|B*| = DAjHIS,, | . %)
asymmetric excitation

Bt = DOIH,  Biy= — By = De/H, By, = Dv/HS,

| B| = Dy H%. ®)
The indices "c" and "a" denote symmetric and a.ntisymmetr‘ic.

Acting in the case of symmetric excitation on the edges of the strip y=3H
are distributed forces FS(+H) exp (ikx - iwt) = F$(-H) exp (ikx) - iwt) and torques
MG (+Ht) exp (ikx - fut) = -Mg(-i{) exp (ikx - iwt). Solution of the problem of
forced oscillations gives displacement and angles of turn on the edges

w(+H) =w(-H) and a(H) =-a(-H). These quantities are reciprocally related by
a matrix of linear dynamic stiffnesses

FS(H) B, B, [NH)J ©)
MOH) || BS, B, || aUD |
From here on we omit the repeated exponential factor exp (ikx -iwt), leaving
only the amplitude values of the quantities.

Forces F3(H) =-F3(-H) and torques MZ(H) =M@(-H) act in the case of anti-
symmetric excitation on the edges of a strip. In the case of asymmetric

33

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1

FOR OFFICTAL USE ONLY R

excitation, experimentally distributed force F,(H) and torque My(H) act on

the edge y = +H, while edge y=-H is stress-free. Formulas (L), (5) give

expressions for the elements of the matrices of linear dynamic stiffnesses

that are defined by matrix model (6). 1In these D=2E;h3/3 denotes the

eylindrlenl utiffness of the plate, and the Greek letters as in (3) denote

the lent members of the dloperslon equations of normal flexural waves in a -
strip with different boundary conditions on the edges, for which the ex-

pressions take the following form:

for symmetric waves
=oashachp—PshpPcha, pe=2uichachp,
ee=rashachp—spshpPcha, ' 0O=—2)apshashp, (7)
A= rfashach P —sfshpcha,

for antisymmetric waves

=achashp—pchPsha, 7y, =2shashp,
ge=rachashp—sPpchPshe, 0, =—203apchachP, (8
A=rtachashp—s?pchpsha,

for asymmetric clamping

6 = 5‘.;1. + 8,A¢ +‘Yc0.| + 7.0c 4 2.8, = 2afrs 4
+ (atr? - B%*) sh 2« sh 2ﬂ‘— af (r* 4- 5% ch 2o ch 28,
¥ =2 (ych 4 vah) = 23 (or® ch 20 sh 2p —
— Ps® sh 22 ch 2p),
e=2(ehs + &) =cfrs (r +s) (I — ch 20 ch 2B) +-
+ (@ 4 B%s%) sh 2a sh 28,
8 =2 (8:A +0.A) = 2u B (Bs? ch 2« sh 2 —
—ar? sh 22 ch 2B, :
Ao = dAhy = 2uBr?s? (I — ch 2z ch 2B) —
—(afr + B%) sh 2o sh 28. , 9)
In formulas (7) and (8) the boundary conditions are the same on both edges,
while formula (9) corresponds to a strip that is stress-free on edge y = -H.
The letters in (7)-(9) denote the following boundary conditions on edge y =H: -
6--clamped edge (w=23w/3y=0); y--hinged (w=My=0); e--unrealized clamps
(w=Fz =0, dw/8y =My =0); 0--sliding clamp (dw/3y= Fy=0); A--free edge
(My = F‘;j:O) . Moreover, the following notation has been introduced: uwp =koll
kg = pwé/D, A =kH; a?=22-uf; B2=22+pf; r=B2-vA2; s =02 - yA2,
Let us note that relations of the form
Y:.lec, L] + 83' s = A'C. B’SC. 8

hold among the dispersion equations for waves of different types. -

3h

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1

FOR OFFIC1AL USE ONLY

We have analogous expressions for longitudinal=transverse linear dynami ¢
stlffnesses:

for symmetric exeltation
Cit == 2THJdes  Cin = = Cht = 2TUe/des  Chn = 2T0e/Aey
|C] = 2T%\Jbe, - (10)
_ for antisymmetric excitation
Ch = 2T, /8y Clh= —Cli = 2T%/ds  Chy = 2TTu/Ay,
|C*] = 2T2\,/A,, (11)

for asymmetric excitation

Ciy e= ETI]/A. Cip = —Cnt = 2T%/4, Can = 2T7/4,
|C| = 2T3A/4, (12)

The first members of expressions (10) are the elements of a matrix defined

by the equality
[F:(+H)J [Cfl Cf,.Mu:wm
Fy G H) Ch Chnll ug+m ]’

where uy, uy are displacements along the x and Y axes, while the forces on
the edges are related by the expressions F&(-H) =F§~(}i) and F&(-H) =-F§(H).

Expressions (11) are obtained for external forces that satisfy the equalities
FR(H) = -F%(-H), F§(H) =FP(-H), while expressions (12) correspond to the

case Fy(-H) =Fy(-H) =0. "In these expressions T =2hEp/H and the Greek letters
denote the first members of the dispersion equations of longitudinal-
transverse normal waves in a strip with different methods of fastening the
edges:

for symmetric waves
Ac=bciashoy—cshachuy, 1 =—ploycho chea,

*e =ik (bchassha, —ashoychay), M= —plosha sh(c?;é
)
Ac = a%sh a; ch oy — b ch & sh o,

for antisymmetric waves

Do=bsha che —cchersha, v, = —ply sha sha,

ta=id(bshosche, —achosha), 3, =—plqche chcz,l.
1)
A, = a* ch o sh oy — bc sh o ch .,

for asymmetric clamping
A=A\, }8,\ 2 (e, + TuNe) + dfeta =
= b (a® + ¢ ch 2% ch 20 -- ¢ (a® -+ b?) sh 2, sh 22, — 2abe,
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~ tn 2 (Tela =} Ta\e) == =20, (0f ch et sh 2, ~<be sh 2o, ch 22),
%= 2 (eln ok aNe) =2 0N lab {u o o) (ch 20 ch 205 = 1) —

— (@ < b%) sh 20, sh 2a,l,
N = 2 (elg o 10 \e) =2~y (u? sh 22, ch 20 — be chi2ash 22,
A = 40N, = (2t ] %) sh 20ty sh 2, =~ 2a%e (ch 22, ch 2a,--zll5)).

Introduced into the formulas is the notation =k H; Wy = lH, b} = po¥Ey

ll = potEy = k(L= V)25 6f e MY — ply o e M iy @ e ONY o b = Qe 02N,

In formulas (13)=(15), the boundary conditions on edge y =l are as follows:
A--gtationary edge (u =1b, =0); t--edge with transverse guides (“x"' =0);
x==unrealized clamps fux—oxy =0 and uy =0yy =0); n--sliding elamp (uy™=oyy =
=20); A--stress-free edge (oxy=o y-obf. %’he dispersion equations for
longitudinal-transverse waves sadsfy the relations

2 (Tealen + 104) = Acadena

It should be noted that the boundary conditions u, = g,, =0, u, =0, =0,
We= F, =0, 0wdy=M,==0 cannot be realized in practice. They themselves
are satisfled on individual frequencies in strips with other boundary con-
ditions [Ref. 2]. It can be shown that boundary value problems with such
condltions contradict the Lagrange variational principle. Implied here are
the formal solutions of these problems that are used for the convenience of
further calculations.

The investigation of wave propagation over a rod of H cross section also
requires the values of linear dynamic stiffnesses of a strip free from

forces on the edges under the action of forces Fy(0), Fy(0), F,(0) and torque
Mx(O) exponentially distributed along its middle line. To derive their
expressions it 1s convenient to represent such a strip in the form of two
identical strips connected by the edges, and to use the results already found.
After simple transformations, we can get the following relations for this
case: '

for bending vibrations:

Fi) ] -[28y 0 [w(o)
M, (0) 0 24,|la (m] ' ~ (16)
for longitudinel-transverse vibrations
[ Fe(0 [%u 0 T 1 (0) -
Lro 5[ o 2, ||lym] (17)

where the "half-strip" linear dynamic stiffnesses By, By, Czy and C,, that
correspond to asymmetric excitation are given in (55:, (12). That matrices
(16) and (17) are diagonal is a consequence of the symmetry of the structure:
symmetric forces F,(0) and Fy(0) cause only symmetric responses w(0) and
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ug(0), while antisymmetriec actions My(0) and Fy(0) cause antisymmetric
responses a({0) and uy(o). )

Thut, nll linear dynamic stiffnesses of the strip are expressed by simple
relations (3)-(15) in terms of dispersion equations of normal waves in
strip with different boundary conditions on the edge. ‘This eircumstance
simplifies analysis of dispersion equations of waves in composite rods made
up of several strips.

The results given here can be used for caleulating other homogeneous struce
tures in which an elastic strip is a composite element [Ref. 10, 11].

2. Dispersion equation of rormal waves in a thin-walled angle-iron rod. Let
us first consider an angle-iron rod (Fig. 1). It consists of two strips
secured together at the edges at a right angle. Let us assign the index "1"
to quantities relating to the lower strip (wall), and the index "2" to the
upper strip (flange). Let us select two systems of coordinates (xy, y1, 21)
and (x2, Y2, 22) 80 that the axes x; and x, coincide with the middle lines of
the strips and are directed toward the same side, while the axes y; and y; lie
in the plane of the strips and are directed toward the line of Joining.

prd ( -

Fig. 1-5

When a normal wave of the form u(y;,ys) exp (ikx - iwt) propagates along the
rod, forces of reaction arise on the line of joining of the strips that have
non-zero components along all three coordinate axes, and a reactive bending
moment that has one nnn-zero component along the xi~-axis. By taking the
strips apart and substituting these reactive forces and torque for the
interaction between the strips, we arrive at a problem of forced oscillations
of a stripunder the actionof external forces and bending moments exponentially
distributed along one of the edges. Their solutions are written in the form

FOHY ] [ B | [wt® (H)
7 [M'xn(ﬂﬁ]z[mﬁ[) EL{;J["U) (Hl’]l
7 [ [ c[se) "
FMHY | Ll e u o) -
where i =1, 2.

Linear relations exist between the forces and torques and also between the
displacements and angles of turn of the strips on the line of Joining. Since -
there are no external actions, the sum of the reactive forces and moments -
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must obviously be equal to zero. 1In the selected systems of coordinates
this relation is written as follows:

FOHY) = F (M) =0, FO (M) 4 FO(Hy) =0,

MP () - MP(HY) =20, FN(HY) + FO(HY) = 0, (19)
the relations between the displacements and angles of turn are a consequence
of the rigid Joining of the strips: they should be the same for both strips.
In the selected coordinates, this condition takes the following form:

W (Hy) = = ul (), ul (Hy) = u (1), o

alh) (H,) = a@ (H,), “’(Hl) = w® (Hy), 20
Now substituting the rorces and torques from (18) in equalities (19) and
substituting the displacements and angle of turn relating to the first strip

in accordance with (20) for the corresponding values for the second strip,
we get the homogeneous system of linear equations

(€ + Gl 4 P — Cfiwt = 0,
C(num + (CL',! m) u(l) AW B(l)uu) = 0,
d%m+wm %wn+3um~0
BEY 4 B + (B + BE)a = 0, ' (21)
In order for this system of equations to have a nontrivial solution, i. e.

in order for a normal wave to propagate over the rod, its determinant must
be equal to zero,

cip+c ey —cp 0
(3)
CW QR+BW 0 By .
—Cc® ] BY4c gy =D - (22)
0 Bay BY BN+ B

And this is indeed the dispersion equation of normal waves in an angle-iron
rod that establishes the relation between the constant of propagation Kk,
the angular frequency w and the parameters of the rod.

In solving system of equations (21) in the usual way, one can find the dis-
placements and angle of turn on the edge y; =H; of the first strip, and by
using relations (20) -- the displacements and angle of turn on edge yz =H»

of the second strip. On the basis of these data, one can easily find the
displucements, angles of turn, stresses and all other quantities that charac-
terize the propagation of normal waves along the rod. However, in the
following discussion we will be interested mostly in the dispersion properties
of normal waves, limiting ourselves to the investigation of dispersion
equations of form (22), since it is the dispersion properties that determine
the peculiarities of propagation of waves along infinite rods, as well as

the spectral properties of natural oscillations of finite rods.
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Dispersion equation (22) 18 the determinant of the sum of the matrices of
linear dynamiec stiffnesses of the individusl strips relative to the forces
and torques acting along the line of Joining., ‘his matrix sum is equal to
the matrix of linear dynamic stiffnesses of the Joining of the strips, 1. e, -
of the entire angle-iron rod. We can convince ourselves of this if instead
of (19) we ussume that the sum of the reactive forees and torques is equal to
the external forces and torque, and then use relations (18) and (20). Thus
the dispersion equation can be interpreted as the zero value of the determi-
nant of the matrix of linear dynamie stiffnesses of the given rod as deter-
mined on the line of Joining of its component strips. This assumption is
common to all composite rods considered here. It is analogous to the con=
dition of resonance of c¢scillations of mechanieal systems (the determinant of
the matrix of dynamic stiffnesses is equal to zero), the only difference being
that linear dynamic stiffnesses stand in place of the conventional dynamic
stiffnesses, and instead of resonant oseillations of the system, normal waves
are considered that have the capacity to propagate freely (without external
forces) over an infinite composite rod.

3. Channel-tron with identical flanges and T-rod. The cross sections of
these two types are shown in Fig. 2, 3. 'They are typified by a plane of
mirror symmetry. It is Known [Ref. 12) that in a mechanical system with
such symmetry oscillations of two types exist -- symmetrie and antisymmetrie
relative to this plane. They are independent of one another and can be
studied separately.

First let us consider symmetric oscillations of channel iron with identiecal
flanges. We select two systems of coordinates: (xy,y1,21) associated with

the wall, and (x3,y7,23) associated with the upper flange; the coordinate

axes are oriented in the same way as for the angle-iron rod in the preceding
section. Since we are considering only symmetric movements, the oscillations

of the lower flange will by the symmetric mirror image of the oseillations

of the upper flange. Thus it is sufficient to consider the interaction of the -
wall with the upper flange alone, but keeping in mind only symmetric motions

of the wall.

As in the case of the angle-iron rod, reactive forces (three components ) and

a reuctive torque (one component) arise on the line of Jjoining of the strips.

The relation between them and the corresponding displacements for the flange -
in the given case is the same as in the angle-iron rod. For the wall in

symmetric vibration, this relation is expressed by formulas (6). Then re-

peating all considerations and calculations of the preceding section we can

arrive at homogeneous system (21) and dispersion equation (22) in which the

linear dynamic stiffnesses of the wall calculated for excitation on the edge

y =+l are replaced by the corresponding linear dynamic stiffnesses of the

wall with symmetric excitation. -

The same results are reached by consideration of normal waves that are
antisymmetric relative to the mirror plane, the only difference being that

linear dynamic stiffnesses with antisymmetric excitation are taken for the
wall.
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Thus the dispersion equations of two modes of normal waves (symmetric and
antisymmetric) in a channel iron with identienl flanges take the form of a
zero determinant of fourth order (22) in which the index "1" {ndicates the
linear dynamle stiffnesses of the wall with symmetric or antisymmetric
excitation. The symmetrie ense corresponds to longitudinal waves, while
the antisymmetric cnse corresponds to associated flexural-torsional waves.

The T-rod consisting of two strips (see Fig. 3) also has a plane of mirror
symmetry that passes through the middle plane of the wall. Therefore in this
case as well we can consider symmetric and antisymmetric movements indepen=
dently of one another. As before, the index "1" will be assigned to the
vall, and the index "2" -- to the flange. 'The height of the wall is 2M;,

and the width of the flange is L4H, (double flange).

Let us select two systems of coordinates (xy,y1,21) and {x3,¥7,22). We
nusociate the first with the wall, the xy-axis being combined with the middle
Une of the wall, while the y)~axis is directed toward the flange in the

plane of the strip. We associate the second ccordinate system with the

flange in such a way that the xp-axis coincides with the line of Joining of
the wall with the flange and is directed toward the same side as the xj-axis,
while the 2p-axis coincides with the y -axis. The 7y and y, axes are directed
so that both systems are right-handed.

When a symmetric normal wave propagates along the T-rod on the line of Joining
of the strips, forces of reaction F\’(M,) and F\'(H,) arise that act on the
first strip; FP(0) and F¥ (0) that act on the flange along its middle line.
The third component of force and the bending moment of reaction do not arise
since they cause antisymmetric motions. The sum of the forces of reaction is
equal to zero:

FOH) +FP0) =0, FO(Hy) + FR(0) =0, (23)
- while the displacements of the strips on the line of their rigid Joining
should be identical:
u (Hy) = uP0), ) (H) =w(0). ' (24)

The relation betWween the forces of reaction and corresponding displacements
for the wall is written in the usual way:

Fvan] el e [« w 2
o)~ e e lupen] )
and for the flange this relation is found from formulas (16) and (17)

o] Tl 0 [
LFo@] ] o 2B [w"’(ﬂ)]' (26)
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Let us reeall that the flange here is treated as a doubled strip of width
by, while the linear stiffnesses CP and B apply to a flange of width
2H,.

Substituting relations (25) and (26) in equality (23) and using (24), we get
the following dispersion equation for symmetrie normal waves in a T-rod:

v o | ,
o o[ )

When a normal wave antisymmetric relative to the plane of mirror symmetry
propagates along the given rod, a reaction force FY (H,) and reaction torque
MY (H,) arise on the 1line of Joining thut aet on the wall, as well as a force
of reaction FY(0)and a reactive moment M'® (0)that act on the central line of
the flange. In the selected coordinate systems the condition of absence of
resultants is written as

FNU) = FPO) =0, MOH,) 4 MP(0) =0, (28)
and the conditions of rigid Joining of the strips take the form
) WO () = —uP(0), oW (Hy) = a® (0). (29)

The relation between forces and displacements is expressed in terms of linear
bending stiffnesses

F“) H B") Bll)“ ()
2 (Y - ul r:) [-'" (”.)]. (30)
M(x”(”l) * B("‘ BL’J a b(Hﬂ :

For the flange, this relation is found from formulas (16) and (17)

' Fd o) . 2 0 J[uld o) . a1
MM () 0288 d®
Proceeding in the usual way, 1. e. substituting relations (30) and (31) in
equalities (28) and taking consideration of conditions (29), we can get the

sought dispersion equation of antisymmetric normal waves in a T-rod in the
form of a zero determinant of second order

By AW
BY B2

=0. 32)

Equation (27) is the dispersion equation of longitudinal normal waves in the
T-rod, and equation (32) is the equation for flexural-torsional normal waves.

k. Box-beam rod and I-beam with identical flanges. Rods of this type are
shown in Fig. 4, 5. These are typified by the presence of two mutually

, b1
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perpendicular planes of mirror symmetry. As a consequence of this faet, in
these rods there are normal waves of four modes that exist independently of
one another: longitudinal, i. e. symmetriec relative to both plunes of sym=-
metry; two modes of flexural waves that are symmetrie relative to one of the
planes and antisymmetric relative to the other; and torsional waves that are
characterized by antisymmetric motion relative to both planes of symmetry.

Let us consider first the box-beam rod (see Fig., 5). 'This consists of four
palrwise ldentieal strips connected in four cornmers. 1In view of the symmetry
1t is sufficient to consider the interaction of two strips in one of the
corner Joints, since the motion and interaction in the other jJoinings will

be repeated symmetrically or antisymmetrically depending on the mode of the
normal waves. Let us take two strips, e. g. the upper one and the one on the
left, that form the upper left corner Joint. Let us construet a coordinate
system for each of these strips so that the x; and x; axes coincide with the
middle lines, while the y) and y; axes lie in the plane of the strips and

are directed toward the line of their intersection.

When a normal wave of any of the four modes enumerated above propagates in

_ the angle Joining, forces of reaction with three components arise as well
as a reaction bending moment with one component (along the x-axis). In the
selected coordinate system the relations between them, and also the relations
for the displacements and angles of turn of the strips will coincide in
accuracy with the analogous relations for an angle-iron rod (19) and (20).
However, the relation between the forces and displacements for each of the
strips is different from (18), and will be expressed in terms of symmetric
and antisymmetric linear dynamic stiffnesses. The derivation of the necessary
formulas and the final results repeat the computations for an angle-iron rod.
The dispersion equations of the four wave modes in the box-beam rod are four
zero determinants (22) in which linear stiffnesses with symmetrie or anti-

- symmetric excitation stand in place of the linear dynamic stiffnesses of the
strips with asymmetric excitation. Thus in examining the longitudinal waves
for both strips it is necessary to take symmetric linear stiffnesses. 1In the
case of torsional waves all linear stiffnesses in equation (22) must be taken
for antisymmetric excitation. Two cases when symmetric linear stiffnesses
are taken for one of the strips in equation (22) while antisymmetric stiff-
nesscs are taken for the other correspond to independent flexural waves
in the horizontal and vertical planes.

Now let us go on to the I-beam rod (see Fig. I). It consists of a single
vertical strip (wall) and two horizontal double strips (flanges) that are
taken as identical. Thanks to the presence of mirror symmetry, here as in
the preceding case we can consider only one joining of the strips, e. g. the
Joining of the wall with the upper flange. In the lower Joining everything
will take place symmetrically or antisymmetrically relative to the horizontal
plane of symmetry. If we take two coordinate systems -- one in the well and
the other in the flange, just as for a T-rod, the further derivation of dis-
persion equations here will exactly repeat the derivation done for the T-rod.
The only difference is that for the wall it is necessary to take symmetric
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or antinymmetric linear dynamic stiffnesses. As a result we get the following
dlspersion equations of the four normal wave modes of the I-beam rod (for the

sake of convenience the index "1" is omitted and the index "2" is replaced by
a otroke): .

for longltudinal waves:
.\571

- Ch+2y G
C  Chaek 2By,

=Y,

or in expanded form
| Ce{ -+ Chn (2Ch) - G (2B1) + (2CH)(2Br) = 0, (33)

where the first term is the determinant of the matrix of linear stiffnesses

of the wall in the case of symmetric excitation by longitudinal-transverse
forces;

for flexural waves in the plane of the wall

Ch+2Cy  Ch

, 0
Ch  Cap28y, ="

or in expanded form
|C*] + C3(2B}) 4 Chn(2Ch) + (2Cu)(2Bi) = O, (3%) -
where |CB| is the determinant of the matrix of linear stiffnesses of the wall

in the case of antisymmetric longitudinal-transverse excitation for flexural
waves in the plane of the flanges

geich, o |
B:I b:a 4 2B;a o
or in expanded form ’

| B| + Bfy (2B.a) - BSa (2Chn) + (2B2a)(2Chn) = O, (35)

wherc |B®| is the determinant of the matrix of flexural linear stiffnesses of
the wnll in the case of symmetric excitation;

for torsional waves
B + 2¢,, By

. =0,
B«:l B:x + 2Bn

or in expanded form

| B | -+ Bl (2B2s) + Bla (2Cin) + (2B3a)(2C00) =0, (36)
\ 13
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where |B3| is the determinant of the matrix of flexural linear dynamic
stirfnesses of the wall in the case of antisymmetric excitation on the edges.

Y. Ueneral properties of dispersion equations. Ench root of the dispersion
equation gives a value of the constant of propagation of a normal wave, and
therefore determines its dependence on the longitudinal coordinate of the rod.
The real roots correspond to normal waves that propagate over the rod without

- damping, while the imaginary roots correspond to waves that are exponentially
damped with respect to the x coordinate, all points of the rod fluctuating in
phase. The complex roots correspond to traveling waves with amplitudes that
increase or decrease exponentially with respect to x. Waves of these types
have already been encountered in the study of flexural and longitudinale-
transverse oseillations of a thin elastic strip [Ref. 2]. ‘They all arise in
composite thin-walled rods as well,

Dispersion equations (22), (27), (32)=(36), after substitution of the corre-
sponding expressions for linear dynamic stiffnesses are transcendental
equations in which the variable ) =kH is squared everywhere. This means that
if X is a root of the equation, then -\ is also a root.

The first members_of the equations are real quantities, and for each of them
the equalities £(X) =T(X) = f{A) are saticfied (the line denotes the complex
conjugate). In other words, if A is a root of the equation f()) =0, then
the complex conjugate A will also be a root of the equation f(\) =0,

Thus the real and imeginary roots of the derived dispersion equations are
always met in pairs %A, while the complex roots oceur in groups of four -=-
A, A,

We can easily go on and convince ourselves that since only rational and
exponential functions of A and (A2 +p2)% appear in the first members of
these equations, they are entire functions of first order. On the basis of
general theorems of the theory of analytical functions [Ref. 13}, such
functions have an infinite (even) number of zeros that cannot have points of
crowding in any finite part of the complex plane. This implies that in each
of the rods considered above there is an infinite number of normal waves,
and that the modulus of the constant of propagation increases monotonically
with an increase in the number of the normal wave.

Let us now prove the following statement: on any frequency there exists a
finite number of real and imaginary roots and an infinite number of complex
roots of the dispersion equations investigated here.

For the proof we consider the behavior of the dimensionless constant of
propagation A of waves with high numbers whose modulus is much greater than
unity, and the parameters uf, u§ and n2.

To do this, we expand the first members »f the dispersion equations in series
with respect to the small quentities (u3|2)). (7|24, (0*124) and taking only the

i
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first terms, we investigate their asymptotie behavior. fThe expunsion is n
cumbersome operation, and therefore nll intermediate results are left out.
As 8n example, we give the expansions of the linear dynamice stiffnedses of
a strip with asymmetriec exeitation:

for flexural waves

By 4DN (¢ sh 4h — 2N)A H2,
B“ = B,,z D(i — \‘) M [gde ch4) — (/l}\),]/AlH'.
Bag == = ADX (e sh4h 4 40)/A\H,
| B == D1 =~ v)2A4[2¢? ch A — (4A)2)74, 19,
Ay = 2ech Al 4 (AN (37)

for longitudinal-transverse waves

C” = ‘Gth’. sh ’il/” e \’) ’,Aﬂ.

Cinz= = Cpp = 2ihEN|2g ch ), + (AN)2)/H A,
szlm&lwéuu+me,
€] 2 1GHED |2 chA) ~ (AAYHA,,

By = 3f ch A, - (AN, (38)

Here d=(14v)/(1-v), e=(3+v)/{1-v), f=(3=v}/(1+v), g=(1=v)/(1+v).
The expansions of linear dynamic stiffnesses of the strip for symmetric and
antisymmetric exeitations have the same form and order with respect to A,

It is immediately clear from these formulas that at large IA| the flexural
linear stiffnesses exceed the longitudinal-transverse stiffnesses. In other
words for short waves the bending of the strips is the decisive form of
motion, and the longitudinal-transverse stiffnesses in the dispersion
equations can be disregarded in comparison with the flexural linear stiff-
nesses,

For instance let us consider dispersion equations (33) and (34) for longi-

tudinal and flexural waves in an I-beam rod. Substituting in these equations

the asymptotic formulas for linear stiffnesses and disregarding quantities

- Cgﬁﬂ and C§p® sz having order of smallness A-2 in comparison with By, we
can reduce them to the form (sz“'+ECiz)Bét =0, or in expanded form

(¢’ sh 20" — 24.") [a, ch 2\ ch 2)." -} a3 sh 2Ash 20’ 4-
4-a, (20")2ch 2\ = 0, (39)
wherc the uy are constants, }=1, 2, 3. This expression obviously decomposes
- into two 1naependent equations. The first is an asymptotic dispersion
- equation of symmetric flexural waves in the flange that are not influenced
by longitudinal-transverse movements of the wall. The second equation
deseribes purely longitudinal waves in the wall-flange system under condition
that no bending of the flanges occurs.

After carrying out the same computations on equations (35) and (36) for
flexural waves of the second type and torsional waves of an I-beam rod, we can
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get the followlng asymptotie equution:
bysh A ch 2A' | b, sh 27 eh D 4 by QM) sh 9 =2 0, (40)

This expression deseribes combined flexural oseillations {symmetric and anti-
symnetric) of a wall and flanges without the partieipation of longitudinal=
transverse waves in this process. Equations of types (39) and (L0) are nlso
obtauined for an I-beam rod.

For the angle-iron rod an analogous procedure leads to two independent
equations: Cg7+C)7 =0 and Btt?8'|#-B£tIB|!=O which, after substituting them
in (37) and (38), are reduced to equations like (39) and (LO). One of these
equations deseribes purely longitudinal waves in the angle~iron rod where
bending does not occur. The second relates to purely flexural waves that

are not influenced by longitudinal-transverse displacements of the strips.

- Equations of the same kind are obtained for a channel-iron and box-beam rod.

From this we can see that in the case of large |A| dispersion equations (22),
- (21), (32)-(36) reduce to simple equations with general form that can be
represented as a linear combination of quantities sh(2\ £2x'), ch(2) +2)'),
A2 ¢ch 2\ and A28h 2\, But such cquations have only complex roots. We can
convince ourselves of this by repeating the derivation of the formulas for
the roots that was done in Ref. 2 for simpler equations of this type (setting
2h=¢ +in, substituting expn/2 for shn and chn, disregarding all terms
that vanish as n==), It turns out that after such transformations the
equation has a solution only when £2 and expn are quantities of the same
order. This implies that all its roots are complex. The imaginary parts n
are proportional to the number of the root (taking them in the order of
increasing absolute value), while the real parts are proportional to the
logarithm of the imaginary parts.

Thus the constants of propagation of normal waves of high numbers, beginning
with some A, are complex quantitieés. But since there are no points of
crowding of roots in a finite section of plane A, only a finite number of )y
can be situated within a circle A < [A,| and some of these A\; may be real

or imaginary. This proves the statement presented above,
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ON APPROXIMATE THEORIES OF FLEXURAL VIBRATIONS OF RODS

Yu.

L. Bobrovnitskiy

This artlicle presents a comparative analysis of the most widely known two-wave
theories of flexural vibrations of rods [Ref. 1]. Principal emphasis is
given to wave dispersion that determines the spectral properties of rods.
Approximate theories are evaluated with respect to the degree of approximation
of the wave dispersion in models to exact dispersion curves.

For the sake of simplicity we restrict ourselves to a thin elastic strip and

its

antisymmetric oscillations in its own plane that are described by dynamic
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equations of the plane stressed state [Ref. 2]. The solutions here [Ref. 3]
are the well known Lamb waves (normal waves in an elastic layer) that like

the eguations themselves are valid in the frequency range where the inequality
(kgh)“<<l holds, 2h being the thickness of the strip, while ky is the wave
number of shear waves in the material. The dispersion relations of the first
two antisymmetric Lamb waves are used in comparative analysis as the exact
dispersion curves.

To meke the transition from the exact theory to the approximate theory we use
the method of averaging with respect to the height of the strip-rod, and

H
introduce the following quantities: average displacement w = (1/2H) B u,dy,
H -H
- avernge angle of slope of the cross section ¢ = (1/) S yu.dy, intercepting
H H © —H

force Q= S Oxdy and torque M = S yoedy, where x, y are the longitudinal
-H —H
end transverse coordinates, uy, are the corresponding displacements,

Oyxs Oxy are the longitudinal aend shear stresses, 2H is the height of a strip,
I=2H3/3 is the moment of inertia of the cross section. Integration of
equilibrium equations [Ref. 2] gives the following two equations relative

to the averaged quantities:

2pH Fwjdlt = 9Q/dx, , : M)
pldM)att = OMJdx — Q. ‘ 2

In an analogous way, by integrating the Hooke relations for the plane stressed
state [Ref. 2] we can get

N Q = 2HE, [0w/0x + uc (H)/H ]}, - 3)
M = E {I0pjox -+ 2Hv [u, (H) — w]} =
. H
= EIoy/ox + v Sﬂvady. (%)°

vhere E, v are the Young modulus and the Poiszgon ratio of the material,
Ey=E/(1-v2), Eg=E/2(1+v) are the longitudinal and shear moduli of
elasticity.

Equations (1)-(4) make up a complete system of equations relative to the

four average quantities. They also include the two "excess" unknown

- quantities uy(H) and uy(H). The assumptions made in the approximate theories
give additional relations among the unknowns, after which the system of
equations becomes solvable. Let us now consider some specific theories.

1. The Bernoulli--Euler equation. In deriving this classical equation, the
following assumptions are made [Ref. 4]: rod cross sections that are flat
and perpendicular to the axis of the rod in the equilibrium state remain
plane and perpendicular during bending as well; b) the longitudinal fibers
= into which the rod can be split up resist bending independently without
influencing one another; c) the rotational inertia of a rod element is not
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i i
taken into consideration. On the basis of the third assumption the first
member of (2) is equal to zero, and therefore Q=3M/3x.  The second assump-
tion implies that o, =0, and therefore from (4) we have M=EI3y/9x, and in
virtue of the first’ assumption ¢ =-3w/dx. Therefore, substituting
Q= dM/ax = ~E13%/3x3 in equation (1), we get the Bernoulli-Euler equation

w1
S+ prgr =0, (5)

where D* = EI/2oH 1s & quantity proportional to the bending stiffness. Seeking
the solution of the equation in the form of a free wave w=exp(ikx - iwt), we
get the dispersion eguation

k= 0YDY = B, ©6)

thi.t relates the constant of wave propagation k to frequency w. It has four
roots corresponding to two direct and two reverse waves in the rod. Below we
will consider only direct waves On Fig. 1, curves 3 and k4 represent dis-
persion cquation (6). 1t cean be easily seen that the Bernoulli-Euler equation
¢ives a good approximation of dispersion to the exact curves 1 and 2 only

on frequencies close to zero.

A=y
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Fig. 1

2. The Rayleigh ecquation [Ref. 5]. 1In deriving this equation, we make all
the assumptions of the previous section except the last. The relations

"= -3w/dx, M=EI3y/dx are satisfied here as well, but from equation (2) we
get another expression Q=03M/3x - pId2y/3t2. Substitution of this expression
in (1) leads to the Rayleigh equation

o g L g ™M
ax VDV gt & dxtart ’
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where c2 =B/p 18 the square of the velocelty of longitudinal waves in a thin
rod. The dispersion equation takes the form

2,0 = ko (ki -1 k)™, @)

where kg 1s the wave humber of a flexural wave in a Bernoulli-Euler rod; ki
is the longltudinal wave number, Curves 5andbon Fig, 1 correspond to this

dispersion. As can be seen from Fig. 1, accounting for rotational inertia

does not significantly improve the dispersion of waves in the rod.

3. The Bernoulli-Euler equation with consideration of shear deformations.

To account for shear deformations in the Bernoulli-Euler model (without
consideration of the moment of rotational inertia) we must drop the require-
ment for a perpendicular cross section of the line of bending while leaving
the other assumptions of section 1 unchanged. 1In this case we can easily
get an equation that differs from (7) in the coefficient of the mixed
derivative, this coefficient being equal to 1/c§, where c% =Ey/p is the
square of the velocity of propagation of shear waves in a plate. ™e corre-
sponding dispersion relation is derived from (8) by substituting kf=w?/c?
for ki. Curves T, 8 correspond to this relation on Fig. 1.

L. The Bresse equation [Ref. 6]. 1In deriving this equation it is necessary
to make two assumptions: a) cross sections remain plane; b) oyy==0, vhich
is equivalent to the assumption of independence of deformations of individual
. longitudinal fibers. With consideration of these assumptions, we get the
_ Bresse equation from (1)-(4):

w1 0% L, ty 8w | dw

e (gtg) et gy =t O
Bresse was apparently the first to consider the way that bending is influenced
by simultaneous shearing and rotational inertia. The third term in equation
(9) reflects the influence of rotational inertia, the fourth takes account
of the effect of shear deformations, and the last term, proportional to the
fourth derivative with respect to time, accounts for the simultaneous action
of both of these factors. The Bresse equation is a special case of the well
known Timoshenko equation (with shear coefficient equal to unity), and there-
fore dispersion will be analyzed below. Let us note only that simultaneous
accounting for shear and inertia leads to a qualitative change -- the
appearance of a cutof! frequency on which the dispersion curve of the second
wave passes from the imaginary region into the real region.

5. Volterra theory of plane cross sections [Ref. T7]. The only assumption in
this theory is linearity of the dependence of all displacements on transverse
_ coordinates. For bending of a strip, this assumption is equivalent to the
following expressions: .
Ur (X, 4, 1) = yP(x, 1), uy (v yt) = w(x, 1), (10)

From which we get the expressions for the torque M=E;I19y/3x and the inter-
cepting force Q =2HE,(dw/3x +¢). Together with equilibrium equations (1), (2)

50
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they form a system of four equations in four unknowns, or one Volterra
equntion

R N N Lo _
" oo - (',_-'f + '}?—) FrrrTre “c?c’ = =0, (1)
. [

where c% =E1/p 18 the square >f the velocity of propagation of a longitudinal

wave in a thin plate. We can readily see that equation (11) can be derived

from the Bresse equation (9) by replacing the Young modulus E with

Ey =E/(1=v2), This means that both these equations have similar dispersion
relations on middle and high frequenecies, but differ on low frequencies, As

w=+0 the Bresse, Bernoulli-Euler and Rayleigh equations give dispersion

k) =ko and kj % ik that coincides with the dispersion of the actual rod, and
equation (11) implies that ky » (L - v2)%k, ko =1k). Thus the Volterra model -
is (1-v2)=1 times stiffer than a real rod. This is a consequence of the -
second equality of (10), in virtue of which this model does not permit

transverse compressions and expansions,

6. Approximations of Vlasov [Ref. 8] and Ambartsumyan [Ref. 9]. ‘The second
of these theories assumes: a) duy/3y =0 -~ transverse displacements of all
points of the cross section are the same; b) Oxy (X3¥,8) = Epd(x,t)0(y) --
tangential stresses are distributed over the cross gsection as a function of
r(y). Using Hooke law, we get directly from this equation

(6,9 ) = =220 4 4oty ),

4 (12) -
(g t) = wix ), gy)=\fm)dn.
. 0

] Thus in contrast to the foregoing theories, curvature of the eross sections
of the rods is permitted here., From displacements (12) it is easy to calcu-
late the stresses, and finding the averaged quantities, to get the following
equation with the aid of (1), (2): -
[ f—v2 Q%o 1 1 da% 1 iw
et —(’é'+',,';'3‘) aon T acics o =0,
(13)
where a=111/2HIQ, I is the moment of inertia of the cross section,
" H
[ e S [(y)dy: Iy .- 3 Y&(y)dy. This equation differs from the Volterra equation
-1 -H
in the factor a preceding c%, that depends on the function f(y). When
f(y) =1/2, equations (11) and (13) coincide. For distribution of tangential
stresses with respect to the parabola f(y) = (H2N ~y2n)/2 the coefficient a
is equal to a=(2n+3)/(2n+L), which gives a=5/6 for quadratic distri-
bution (n=1).

The Vlasov is analogous. This theory is based on two assumptions relative
to displacements:

51
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¢ ¥ | . ‘
Ur (X Yy 1) = =T Oy ) =w(nt,  (14)

llere € w= —(0uy/dY)y~0 and morveover (duydy),-wn =0, 1. e. the crous sections are
curved In such a way that after deformation they remain normal to the faces
y=1H, The quantity Uy is the tangentisl stress on the middle line., Dis=
placements (1b4) g%ve the quadratic distribution of tangential stresses

Sxy =oxy(l-y2/H .+ After the necessary transformations we can get equation
(13) in which a=5/6,

The coefficient a (corresponding to the Timoshenko shear coefficient), as will
be shown below, considerably improves the dispersion properties of flexural
waves on high frequencies. However, equation (13), like the Volterra equa-
tion, has an understated dispersion on low frequencies.

_ 7. Approximations of Reissner [Ref. 10], Gol'denveyzer [Ref. 11] and Ambar-
tsumyan [Ref. 12]. ‘These theories nssume: a) o,, =0, b) Oy (X4 ,t) = Epx
xp{x,t)f(y), where f(y) is the distribution funcﬁon of tangential stresses
(in the Reissner approximation f(y) = (H2-y2)/2). 1In contrast to the approxi-
mations of the preceding section, transverse deformations are assumed here,
resulting in an equation that differs from the Bresse equation (9) in the
coefficient a preceding c%. As applied to a strip-rod, these approximations
thus reduce to the Timoshenko equation that will be analyzed below.

8. The Timoshenko model [Ref. 13, 14]. 1In the Timoshenko theory the initial
equations are equilibrium equations (1), (2) and the following expressions
for the bending moment and the intercepting force:

M = Eldp/ox, Q== q2HE, (0w/ox + V). (15)

A comparison of these relations with expressions (3) and () shows that the
following assumptions are made here: a) Oyy =0, so that (k) implies the
first relation (15), b) the cross sections remain flat, since the quantity
uy(H)/H in (3) is replaced by the angle of inclination of the cross section §,
c§ the shear coefficient q is introduced. This implies that in addition to
the other interpretations (see Ref. 1 and the foregoing section) the Timo-
shenko can be represented as a structure of the rod type with nondeformable
plane cross sections that satisfies relations (15). For practical purposes
it can be realized as a set of rigid plates Joined by weightless elastic
connections, e. g. in the form of spacers of a lighter and more piiable
material that conform to conditions (15). The step of periodicity of the
chain must be much less than the wavelengths of the waves being considered.

Eliminating all quantities except displacements from equations (1), (2) and
(15), we get the Timoshenko equation

ow 1 2 | I b | o
—_— S\ 2E ¥ 16
xR Ton ( a qf:’) oxor " A Tan + (16)

- from which we derive the dispersion equations
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o 2y b (1 = L) " ()

Expressions (17) imply directly that on low frequencies ki s ko, kp *1ikg,
which colneides with the dispersion of the first two normal Lamb waves,
while on high frequencies curves (17) approach the real asymptotes k) =kt/q%
and kp =k;. 'The cutoff frequency of the second wave is determined from the
relation %ktH)2= 3q and assumes the exact value for the strip at q=n2/12,
Fig. 2 shows the dispersion curves (17) for different values of the shear

coefficient.
Arpp
S, 7,8
ol 7%
jn¢ n :/, 7
3 /
¥ 774
Vi
\ éﬁ P74
Lo I

Fig. 2. Dispersion curves: 1, 2--of the first two antisymmetric Lamb
waveds; the other curves correspond to the Timoshenko model with different
values of the shear coefficient; 3, b--q=1 (Bresse model); 5, 6--q =12/12;
T, 8~-q=2/3;9, 10--q=1/2.

The cholce of the coefficient q depends on the kind of problem in which the
model is to be used. For instance in Ref. 15 it is proposed that the rate of
propagation of the first wave in the model approach the veloeity of the
Rayleigh surface wave on high frequencies. In this case the dispersion of
this wave coincides almost ideally with the dispersion of the first Lamb

wvave (q=0.88 when v=1/3). Another paper [Ref. 16] proposes that the values
of q be calculated from the condition of coincidence of the cutoff frequencies
of the model and the real rod (curves 5 and 6 on Fig. 2). Calculations

show that this value of q gives the minimum of the absolute integral
deviation of the dispersion curves of both model waves from the dispersion
Lamb waves in the frequency range of kyH=0-31/2. Let us note that this
frequency range is the maximum possible for any two-wave model of a strip or
plate since the constant of propagation of the third Lamb wave becomes

real on higher frequencies. It is clear from Fig. 2 that we can get coinci-
dence of dispersions in individual narrow sections within this range for
other values of q.
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The good agreement between the dispersions of both models and the exact
dispersion curves enmbles ecalculation of even high natural frequencies of
real rods on which the wavelength of the shear wave becomes comparable to
the height of the rod (kyHs1).

9. Improved Timoshenko model. As implled by the preceding dilscussion, an
essential element of the Timoshenko theory is the longitudinal ecoeffieient q.
The choice of an optimum value foir this coefficlent gives the best approxi-
mation with respect to dispersion among all two-wave theories with fixed
coefficients in the equations, However, such a method of introdueing an
arbitrary coefficlent is not the only one. It seems natural to introduce

a greater number of arbitrary coefficients into the initial equations and

to study the possibility of improving the Timoshenko equation by choosing
the suitable values for these coefficients.

Let us write the expressions for the bending moment and intercepting force
_ in more general form

M == pEIOyox, Q= 2HE, (qow/ox + s¥), (18)

where p, q and s are arbitrary coefficients. Replacement of expressions
{15) by expressions (18) is equivalent to some change of the parameters of
the elastic connections in the interpretation of the Timoshenko model given
above, After substituting them in equations (1) and (2), we get the
following equation:

ohw $ t dhw { | otw
ot ('F&')T" o (W + 'q_c;:') wom +
1
+

oy
g o . o

and the corresponding dispersion relations

I ] 3] 10\ Yy
2 ! t 1k 18 (20)
i =t qi[(p q)+"k° ] '

On low frequencies the two roots of (20) approach the values
. . 21
bk (o0 k= ik @h

and on high frequencies they approach the asymptotes kl/p;i and kt/q;i. The
cutoff frequency is defined by the expression

R H = 3s. (22)
'he special case s =14 is examined in Ref. 17. As we can readily see from
(21), in this case K »ko/p%, ky =ik, and the dispersion of the model waves

on low frequencies does not coincide with the dispersion of real rods, and
vwhen p=1 -~ it reduces to the dispersion of the Timoshenko model.
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It neems to us that correspondence between the low-frequency dispersion
relnbiony for n real rod and itn model in essential, and therefore in order
to choose the best values of the coefficlients p, q and 8 we require first
of all that dispersion relations (20) eoincide with the corresponding
relations for a real rod on low frequencies. From equations (21) we then
immediately get the equality

$= pq. (23)

This expression is general for all homogeneous rods, and does not depend on
the shape of the cross section,

Calculations show that the divergences of wave dispersion in the real rod
and the model are very sensitive to a change in cutoff frequency. In this
connection, as a second condition imposed on the arbitrary coefficients we
take the condition of coincidence of their cutoff frequencies, whiech for an
arbitrary rod tekes the form

ki = pq, (24)

where r is the radius of inertia of the cross section, and the quantity ky
is caleulated on the cutoff frequency, which for a strip-rod and a plate
glves pq=n2/12,

Aexy
7
¢S]
. Z 7
K24 Y
2z
. /]
4
24
72
/2
P HKeore
L/ r 4 /2

74/ 4 I |

Fig. 3. Dispersion curves of the first two Lamb waves (1, 2) and waves in
the refined Timoshenko model at different values of the coefficient p
(pa=12/12): 3, b=-p=0.62; 5, 6--p=0.722; 7, 8--p=n2/12; 9, 10--p=0.9h;
11, 12-~p=1 ("pure" Timoshenko model).

Fipg. 3 shows the dispersion curves (20) for different values of p (the
coefficicnts q and s were found from equalities (23) and (24)). It is clear
from this figure that the Timoshenko model (p=1) does not give the best
approximation here, and the introduction of an additional correcting factor
noticeably improves the dispersion of the second wave. For instance in the
frequency range k¢H = 0-n dispersion curve 8 on Fig. 3 (p=12/12) practically
coincides with exact curve 2. 1In the interval k{H =0-37/2 the value p=0.9
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is best., 'The absolute integral deviation of the dispersion curves of both
- waves at this value is half that given by the "pure" Timoshenko model.

1t is shown in Ref., 18 that this improvement of dispersion properties of

the model leads to a reduction of errors in calculations of high natural

frequencies of real rods.

in conclusion let us note that the model that is deseribed by equation (19)
together with relations (23) and (2h) is the best among the possible two-wave

models with respeet to dispersion properties., The incorporation of a
greater number of correcting coeffleients or theiv introduetion by another

method leads to distortion of low-frequency dispersion and therefore cannot
be considered Justified. It is also worth mentioning that a change from
the Timoshenko model to an improved model can be realized by substituting

-

the angle of turn py for the angle of turn ¥ in expressions (15).

v
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INVESTIGATION OF SPACE-TIME COHERENCE OF SOME TYPES OF ACOUSTIC FIELDS
A. M. Medvedkov, A. T. Shargayev

In determining the influence that mechanisms installed on a common base and
working as a group have on the overall sound field of a room, consideration

is taken of the exchange of energy between mechanisms that is due to the
propagation of vibrations through the base conneecvions. This exchange shows
up In the fact that signals taken off synchronously from sensors installed

on the feet of the mechanisms are correlated with each other, and moreover are
correlated with the signal taken off from a microphone set at the investigated
point in the room.

The excitation, propagation and emission of vibrations are wave processes and
therefore it is natural to expect that the properties of these processes will
show up primarily in such a specific characteristic as the coherence function
[Ref. 1].

We will analyze space-time coherence on the basis of a model in the form of a

string that interacts with the acoustic medium. The string is excited by
concentrated transverse forces that may be statistical in the general case.
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Let us consider steady-state vibrations of an infinite string in a medium
with consideration of the internal frietion of the materinl of the string
under the action of a force that varies harmonieally with time. To do this,
we introduce the complex tension

FeaT(1 +im), . 1)
where T 1 the true tension of the string, and n is the loss factor, nl<el,
Let us take the rectangular coordinate system XYZ so that the X-axis is along
the axis of the string, and the XOZ plane coincides with the plane of

vibrations of the string., In this coordinate system the equation of motion
of the string is written as

nr:po-g%- -——-T—"(,-'é-+ Fot Fy (2)

where rg is the radius of the string, pg is the density of the string,

2(x,t) =z2(x)e~19t {s the displacement of the string, F(x,t) = §(x)e-1wt

iy o concentrated force with a single amplitude that acts on the string at
point x, Fp(x,t) is the reaction of the medium to the motion of the string,
Z(x) is the complex amplitude of displacement of the string, 8(x) is the
Dirac delta function, and w is the angular frequency of harmonic oscillations
of the external force.

The pressure change in the medium that is due to vibrations of the string
satisfies the wave equation that is associated with the string in the
cylindrical coordinate system (axis of symmetry directed along the X-axis,
angle 0 read out positively from the plane of vibrations) and is written as

gp 4.1 0p Lo dp 1 % o .

art +_r-7r_ oow + O T W o =0, )
where E(r,e,x,t)==5(r,6,x)e"1”t is the pressure in the medium_that is caused
by string vibrations, ¢ is the speed of sound in the medium, p{r,0,x) is the
complex amplitude of the pressure.

From the equality of normal velocities of the string and the ambient medium,
we pet the following boundary condition:

04z 1 o ’
-Ti‘—'COS 0= —p'T l'a'. ' (4)

where p 15 the density of the medium.

‘The reaction of the medium is the sum of the projections of elements of
force plrg,8,x)rgdd on the z-axis, i. e.

1
Fpe— S rop (ro, 0, X) cos fde=i, )
0

it is assumed in the given expressions for the unknown parameters that they
vary in time according to a harmonic law with the frequency of the perturbing
torce. 'Therefore expressions (2)-(5) can be written in the form
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(=2 =T -g%- L Pt 8(x), ' (6)
01p L oap 10y o3 -

ot e b A, @
- 1 9

20080 = W'ﬁ% o (8)

We write the sought solution of equations (6)=(8) as follows:

3(1) = g g S, (&) exardt, ©)
P(r0,x) = S5 {8, (8) HY @y erea, (10)

where H{"(l) is a Hankel function of the first kind.

The plus sign in the exponential funetion of (9) corresponds to propagatien
of plane waves in the positive direction (x>0), and the minus sign == in
the neputive direction. Considering waves that damp out at infinity, we
toke Im§ 20, The solution in formula (10) obviously satisfies the Helmholtz
cyuation and the Sommerfeld radiation condition. After substituting (9) and
(10) in cquations (6) and (8), we get a system of two algebraic equations
relative to the two unknowns §,(£) and Sp(£), and the solutions give

. aprt _HV(Ere)
S:®) = (55) [-—m’ (L - i) o —‘-’%“—’-m]

(11)
S.() = pot (mtH{" (o)) [— W4 oo (1 L im)t 4
argut " (Ere) 17 (12)
T (H'l‘)'(;r.)] !

where m=nrﬁpo is the linear density of the string material, cﬁ =7/m is the
velocity of transverse waves in the string in a vacuum.

For umall values of rg and low frequencies, i. e. when ¢rg<<l, we can limit
oursclves to the first term of the asymptotic expansion for the Hankel
funclion and itos derivative, and as a result we get

//S"(Crn)lclf‘n"' (£ro) = — ro. (13)
Let uu use the notation
G4, B=Bd4 i =8d—im), (14)

o =w/cg i the wave number of flexural vibrations in the string.

To investigate pressure in the far zone (g¢r>>l) we use a conventional
asymptotic representation of the Hankel function [Ref. 2]
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Ve = VTagrexplior — () 2)). (15)

Substituting (11), (12) in the expressions for displacement (9) and pressure
(10), taklng (13)=(15) into consideration, we get the following relationn:

L
- . i \ oxp (FEX) % 16
(%) vy ,}w QB3 (1 4 o) | {0
. C ot Varer il —
- ~ cosh Fobw n;zrexp|n|5r+5x oal)
Plr 0. %) = tamed AS i 162 B3 (1o pi)] dt.

un
We culculate integrals (16) and (17) with the use of the theory of residues
and the method of steepest descents [Ref. 1], With condition Im30 we get

- fexp (= xt, V7 Fppu W expi—isk, VT p ) 1
)= - e et ) (18,
2"“'0&» VI + pipe(l 4 infd)
- : iputhed €08 o cos 0 exp (ikR)
4 (f| 0, X) == 2""‘% k1 sin? .'»n,_‘%“ IR R L (19)
where R = rjcos g 8o == x/r. (20

I'or the wave zone (kr>>1) a considerable part is played by the small part of
Lhe path of integration that includes the point of steepest descent yg. We
rind its loecation on complex plane ¥ from (20) and conditions x>0, r>sr.
Obviously

0 2 o < 21/2. (1)

Let us consider the vibrations of a string excited at points xy and xp by
concentrated transverse forees fi1(t) and f5(t) that are taken as independent
steady-state random processes of second order. For the sake of definiteness
we set x) =0, x5 20. Let us use the notation Fy(w) and Fa(w) for the
Fourier transforms of forces fi(t) and r(t), and Wy{w,x) and Wy(w,x-x3) for
the Fourier transformers of the accelerations of the string at point x that
arc caused by these forces. According to Ref. 3, the Fourier transform for
the response of a linear system in the frequency region is equal to the
product of the Fourier transform of the input action multiplied by the
f'requency response of the system, and therefore we have

Wi (0, x) = Hi (0, x)F) (v), : (22)
Wy (0, x — xy) = Hy (0, x — x)F5 (0). (23)

The cxpressions for the frequency responses Hy(w,x) and Hy(w,x-xp) are
obtuined by using (18) and the relation
H (0, x) = (i0)* Z (x), (24)
Hl((\),.f) ==
- imexp(—-—"—f_,n—%l/l+-§:)exp(—-€-'--fm%]/l+-'%)
= A

Zmeg ¥V V4 pivg

(25
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Hay oo (0,8 = 1) ==

o — Xy) SR | I — -

v e[S ) E (428 T
S ‘ 2meq V T o plm
X exp(=— in2). (20)

For u point x located to the left of point X2y X=X2<0. 'The total acceler-

utions W(x)) and W(xp) at points x; and xy with consideration of (22)=(26)
ure written in the form

tw exp ('-— -’::'—-) Fy (0)
, 2me, Vi +,P/Po
fwexp (— -LG- — _w_gl‘ - Iwr) Fa(0)
meq VT plpo '
fw exp <—% — mgr - Iwr) Fy (0)
2mey VT + plpg

Wx) = Wiln) + Wa(x) =

@7

Wxy) = Wy (x) + W, (%g) =

iwexp (-— "Tﬂ) Fy (0)
T e, VI T oy @)
! where

= (x/e0) V T3 p/ps -

According to Ref. 2, the relations
MIFi(0) Fj (@) = Gj() 8 (0 — o), (29)
- Gi(w) = M| F(w) l’]. j=1,2, ' (30)
MFy(0) Fa(w)] == 0, (31)

- hold for steady-state independent random processes, where Gi{w) is spectral
density, M is the operator of mathematical expectation, G(m'] is the delta
function.

For the spectral densities of total accelerations at points of the string
with coordinates x; and x; we have

S - ©%G, () w?exp (—wnr) Gy (@) 39
)= i+ i imic (1 +plpg) 3

3 - WEexpi— onr) Gy (w) %Gy (0) ' 23
Saz(w) = At 1 4 ol 4mac3 (1 + plpg) (33)

Using Pormulns (27)-(31) for the mutual spectral density of accelerations
W(x)) nnd W(x,) we get
Sia(w) = w2 exp (— ont/2 -+ iwt) G, (0)
2() 4n3cy (1-F plpy) ) +
. wiexp (— wnt2 — jwr) G, (0)
4mc (1 + plp,)
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By analogous arguments we find expressions for the spectral density of
total pressure Sp(w,r,e,x) at the investigated point N(r,6,x)
B cost iy, cos? (G, (w)
dmicg isind g — (cHe3) (1 +0/p,) PRY
p‘-‘c’r?, €032 1y, cos? 062G, (0)
Amicg [sind Yy (Y/cg)(L +- p/p)12 RY

+

p =

(35)

and for the mutual spectral density of the total acceleration at point x

and the total pressure at a point of field N

periwd cos 0

Sip = rmm—— X
4m=cg]/1 +4-
{ cos ‘mexp (—ioty) G (0) 0S8 Poa eXp [— {0 (T 4 Ta)] Ga ()
X R G
[sim\pm ; (l +-£ )] R, [sinhp,ﬂ.;. z (|+ = )] Re }

(36)
wvhere ]
= Ryjci ry = Raje; r = (x/co) VT F plpo; tg Yoy = x/r;
tg Yoa = (x2 — x)/r; Rj=rlcosy;  (j=1,2).

In formulas (35), (36) we set n=0 to simplify calculations. The coherence
function of total accelerations at points of the string x; and x; with
consideration of formulas (32)-(34) is written as

| exp (inT) Gy (©) + exp (— iot) Gy (o) |2 (37)
{exp (@N7) Gy (@) + G2 (0)]{Gy (0) + exp (07) Gy (0)]

Vi (0) =

After simple transformations this formula can be written in the following way:

G} (0) + G (0) + 2G| () G, () cos ot

3 -
Yia (0) = Texp (@NT1G, (0 + G, (@)]1G, () < exp{wnT) G4 (0)] (38)

This formula implies that the coherence function of total accelerations of
the string at points of application of forces f(t) and fo(t) will decrease
with nn increase in the damping factor n in the string. The numerator of
the coherence function includes an interference term cos2wt that is a conse-
quence of the wave nature of the investigated oscillatory processes and leads
to a periodic change in the coherence function. In particular, as n-+0 and
G) =Gy we have y{p(w) =cos?wt, i. e. the coherence function varies as the
squure of the cosine of wrt.

''he ecxpression for the coherence function that relates the total acceleration
at an investigated point of the string to the total pressure at the investi-

jmled point of the field N(1,0,x) can be obtained from formulas (32), (35),
(36).
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Dioregarding attenuation and considering that in the wave zone Xp/r<<l,
Vo2 *1m=Yg1, we have
o 0} () -} G () 4- 20, (0) G (w) ot ;2 {v) — ¥ -1))
] - 1 2 1 2 . 1 2
: Vi (0) [0, (@1 F G; (@IF '

If Ry denotes the radius vector that Joins the middle of the string segment
between the points of application of forces f£1(t) and f2(t) to point N of
the field, and 0 denotes the angle that this radius vector makes with the
positive direction of the axis of the string, then when x,/r<<l, we have

9.'2’3/2--1%;.
Ri= Ro+ Leosh, R, = Ro — 3} cos,
X,

R, a2 R Xq '
- T|=T+-2-5-C089. r,-=—c-—-.—2c—cose.

With consideration of these formulas, the coherence function can be written as

Viw () =
lO.(m)exp {-—iio [(-%)coso—-%]/l-}-_%— }+

. : i 1NE
+ Gy (w) exp {im "jT-C""o";T:]/I L Fp‘— H
1G; () 4 Gy (w)? '
When Gj(w) =Gp(w) the coherence function is written as
iy (0) = A cos? v,
A = |exp{— 0 1(2/0) Ry -+ (va/ey) V T gl =1,
= ot cos0— 221/ 1 B
| = m( 705 0 Tc“,'l/i"L‘T’:,‘) -

' 3T, ¢ ~/ 7T
. T‘.(coso-—]/ 1+ _p‘:_)

Co

.

Obviously the coherence function takes on its maximum value when ¢ =0,
. i. e. when

cosl) == -r—‘l/ 1 4= £ . sin Yo+
- e

Thus the coherence function reaches the maximum value when the coordinate of
a point on the path of steepest descent T' on the real axis is equal to the
anyrle that the radius vector drawn to point N from the point of application
of rorce f1(t) makes with the x-axis.

The result can be attributed to the fact that the field at observation
point N is rormed mainly from plane waves that propagate at the same angle
Yo1s and therefore is distinpuished by high homogeneity.

The normalized value of the coherence function has a radiation pattern in
the plane that passes through the axis of the string and observation point N

Vin/(Yin)max = cos
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The three-dimensional radiation pattern is obtained by rotating the curve for
cos ¢ about the OX axis.

The radiation pattern of the coherence function that relates the total
acceleration at one of the points of application of the force to the total
pressure in the field that is caused by vibrations of the string under the
action of two random forces with different spectral densities is an analog of

6l

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1

—



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1

FOR OFFICIAL USE ONLY

? the radiation pattern of two monopoles [Ref. 3] with accuracy to the angle

1 o -::1/1 +‘.%. For a glvenxy/A this angle depends on the ratio of the
‘ velocities of sound in the medium and the string, end also on the ratio of
densities of the medium and the string material.

. Shown in:Fig. 1, 2 are examples of radiation patterns of the coherence func-
tion when ofc, 2~ 12, V1 +p/pogx 1. Curve 1 corresponds to the case where

- x2/A=0, 1. e. vhere the points of application of forces £1(t) and fp(t)
colncide the radiation pattern of the coherence function is a eircle of
unit radius.

Curves 2 and 3 correspond to the cases where x3/A =1/2 and xp/A =1 respec-

tively. fThese figures show that as the distance between the points of

application of the forces increases the lobes of the radiation pattern

become narrower. This property of the radiation pattern of the coherence

function is determined chiefly by the distance x2/\ between the points of
appiization of the forces, whereas the deviation of the maximum of the

radiation pattern from the straight line perpendicular to the axis of the

string and passing through the middle of the segment that lies between the

points of application of the foreces is determined by the parameters that -
characterize the string and the adjacent medium.

REFERENCES

1. Dzh. Bendam, A. Prisul, "Measurement and Analysis of Random Processes,"
Moscow, Mir, 197L.

2. P. M. Morse, K. Ingard, "Theoretical Acoustics," McGraw-Hill Book Co.,
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A METHOD OF VIBRATION DAMPING IN SOME ROD STRUCTURES
V. M. Ryaboy, V. V. Yablonskiy

Multidimensional linear oscillatory systems enable damping of vibrations

by redistribution of perturbing forces (velocities) at the input of the
system while maintaining the integral characteristics of their intensity on
the same level. .

Fundamental problems that are associasted with the possibility of implementing -
such a method of vibration damping were discussed for general linear systems

in Ref. 1. A specific example of damping of the oscillations of a structural
member (cantilever rod) by selection of the optimum distribution of perturbing
forces was considered in detail in Ref. 2. 1In our paper we examine the
possibilities of this type of vibration damping, analyze some special cases,
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and evaluate the effeectiveness of vibration-damping rod structures that
utilize the given principle.

Minimizing the flow of vibrational energy in multidimensional linear systems.
The flow of vibrational energy radiated to supporting connections is

expressed by a Hermitian form of the vector of complex amplitudes of
generalized forces or generalized veloeitles ut the input of the system

[Ref. 1). It is possible to minimize this form, i. e. to achieve an effect
of vibration damping by matching the optimum relations among the different
components of these vectors. As an example we consider a system with a
harmonic force Q and torque M applied at the input. For the sake of con-
venience in subsequent calculations we introduce a constant of proportionality
r with dimensionality of length between the force and the torque:

M =rQ, (1

Using the notation yy (i, J=1, 2) to denote the elements of the complex
matrix of input mobility Y (reverse resistance) of the system, ve write the
expression of active power N at the input in terms of the complex amplitudes
of force Q and torque M:

N = 0,5 Re {ynGQ + g1 (QM + QM) + yuMM). 2

The problem of vibration damping in the given instance reduces to minimizing
quadratic form (2) for fixed Q and constant yjj, i. e. to the proper choice
of the value of r. Let us note that the minim{zution we are considering
here with fixed force Q differs from the minimization studies in Ref. 1
under the condition of constancy of the sum of the squares of the components
of the input parsmeters. In the given case the optimum vector of the input
parameters (Q, M) is no longer an eigenvector of form N. In the given

_ problem there is no difficulty in finding the optimum vector (i. e. deter-

. mining the optimum r). Substituting relation (1) in formula (2) we get

Wﬁ_..f""%”’*'?'%’;"‘*" 8y = Reyy. @)
) Since gy >0, quadratic trinomiel (3) has a unique minimum that is reached
when r=r#*
r* = —gu/fn
and is equal to
(NIN |rmd)in = 1 — @1a/81181s- (4)

As & consequence of the positive definiteness of form N, the value of (L)
lies between zero and unity.

We have examined the problem of minimizing the flow of energy by redis-
tributing perturbing forces for a two-dimensional system, i. e. a system
with two inputs. The formel generalization of this analysis to the case of
any number of input parameters presents no difficulties. The direct gener-
alization of the given problem is a problem of quadratic programming with
constraints of the equality type. Methods of solving this problem have been
thoroughly worked out (see for instauce Ref. 3).
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Damping of flexural vibrations of a rod or plate. In the following discussion
we wlll concentrate attention on development of one version of a systenm of

the given kind, namely an elastic rod or plate in flexural vibration and
attached to some load, 'The rod vibrations are considered within the framework
of elementary beam theory. The complex amplitude of transverse oscillations
u(x) is represented as a linear combination of A. N. Krylov's function of

the argument kx, where the wave number k is expressed in terms of the angular
frequency w by the relation (for a plate) k" =phw2/D (D=En3/12(1 - v2) is

the c{lindrical stiffness, p 1s density, h is thickness, v is the Poisson

- ratio).

We have ‘

u (%) = CiS (kx) + GT (kx) + CyU (kx) + C\V (kx). (6)

The complex amplitudes of the bending moment M and the transverse force Q
are defined by the formulas

Q=Du" (x)y, M=Du"(x). (6)

Using the subseript I to denote the values of the quantities where x=1,
we write the conditions on the right end of the beam:

Q=Q M=rQ 0

For the sake of simplicity we will assume that the matrix of mechanical
resistance of the load is diasgonal. Then the conditions on the left end of
the rod are written in the form

Qo= DK%zjivou,, Mo = Dkziouk, ®

where the zero subscript denotes the corresponding quantities when x=0.
The active power radiated to the load is equal to

N = 0,5 Re {Qofa; + Moiwuy). -
Relations (8) imply that
N = 0,5Dk % (Rez, |y ! + Reza|upfke ). (10)

The yuantities ug, ug/k are related to Qz, Mz by equations that derive from
(5), (8)
MyDR? = (U — iwg,T) uy 4 (V + iwz,S) ug/k, )
- QiDE® = (T — ivz,S)uy + (U + iwzaV) upfk,
in which the coefficients contain A. N. Krylov's function of the argument kZ.
Relations (8)-(11) enable us to write the energy flow as a quadratic function

of |Q| in which the coefficient is a quadratic trinomial of r. After this
we can easily minimize the energy flow with respect to r.

- It is of interest to consider the limiting case of infinite mechanical
resistance of the load to transverse force 21. This case can be analyzed
by replacing the first condition of (8) with the condition ug =0, or passing
to the limit in (11) as z}+=, up+0, z up <=. Elementary celculations show
|up| as well as N vanish at r=r*:

Pl = TIRIS. (12)
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Let us note that the optimum choice of r*/I (12) ia independent of the turning
resistance zj3.

The second important limiting case is the case of infinite turning resistance
z3. Proceeding by analogy with the foregoing, we find that N vanishes

when z =2%;

r*il = S/klV, (1 3')
In both cases conszidered

NIN lrog 5= [(r]r") = A1, - (19)

It 1is easy to verify that on high frequencies the influence that the me-
chanical impedance of the load has on the quantity r* becomes negligible.
When kI ==, r*~1/k regardless of the values of 2z, z2. In the case where
both zy and z, are large (the rod is clamped), the degree of vibration
damping 1s evaluated not by the quantity N, but rather by the value of the
coefficient of transfer K with respect to force. This coefficient is

K = Qo/Q = (krV — 8)/(S* — VT) (16)
and vanishes at the r defined by formula (13).

We have discussed vibration damping by matching the ratio of the generalized
forces at the input of the system. In some designs it may be convenient to
match the ratio between the generalized displacements at the input. In this
case

Upeu,  Up=ufr ' ' (16)

Let us give the formulas for energy flow in limiting cases:
8s z) *® NINlpmew = [(F)r) = 1), 7/l = UJRIT.

as 2y =+ ® N/N'I-au = l(f./f) _— 1)" ,-'/[ = V/kIU' ’ (17)

The preceding general examination shows that by varying the quantity r*/1
we can achieve appreciable (in limiting cases total) vibration damping.
Now let us consider the use of this effect in some specific structures.

Minimizing the vibrational energy that travles through a T joint between
plates. Many elements in building construction, shipbuilding and other
structural elements can be modeled by an infinite rod or an infinitely long
thin plate. Here we investigate the propagation of waves through structures
of the type considered above in the case where the load is an infinite plate.
The problem is considered plane. By using the equations of oscillations of
an infinite plate excited by a force and torque, we get the relations among
the complex amplitudes of the forces and displacements at the Joining point O
in the fornm

Qo = — 2ia Autty, Mo =2(1 + i) Dukully. (18)

Here @, is the wave number of longitudinal oscillations, k, is the wave
number of flexural vibrations of an infinite plate,
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al = Puhao?/A k) e fuhuw?/Dy;
Dum Butift2(1 = vh) Ay == Eyhuf(t = 40)

1 are the flexural and longltudinal stiffnesses respectively,
with (8) ve get

W e =B, oz = (l—i)p,

where
ﬂ] = 20..!1../(0/23. ﬂl g QD"ku/Dk-

Comparing (18)

(19)

Within the framework of applicability of the theory of thin plates the

quantity B, is large. To be precise,

L Ep(l =) LYY

Wl =vt) A

y 2
1. e. 1/8) has the order of the z)‘ati"o of the thickness of the plate to the

wavelength.

The flow of energy through the Joining is equal to
N o= -%-Dk%)(ﬁﬂ“o 14 ﬂil uo/k ).

Expressing the quantities |ug|, |ug/k| in terms of |Q| with the use of rela~
tions (11), (19), (1), we get the following expression for N=N(r):

A py(krit 4 2p ik
N(r)n—A_i:) ,S : Py (hr) t‘m r + 0,

el e 9 ) e
,,1.-...%er[({;.ys)(%.yv)+sv]—‘g—g"_—sr;.
n=f{(5+ v)’+v*]+—p73.:,-+s’;

fme gt ) ke - )

Here

(20)

= A=2(ST-Ww), B=2(TU-8V), D=2(TV-U2), E=2(S2 - TV) are known combinations

- of A. N. Krylov's functions.

It is easy to see that p; >0, p; <0. Consequently the quantity N(r) has a

unique minimum that is reached when r=r*: r#/L=_p,/kip,.

As wus noted above, the quantity B) is large compared with unity (8, ~(kh)-1).
For the purpose of a qualitative analysis we can take 8y -+« in (20). This
limiting case has been considered above. The result is expressed by formulas
(12) and (14), and does not depend on Ba. The frequency dependence of the
ratio of N(r) to N(O) is shown in Fig. 1. This ratio remains close to zero

over a wide range of frequencies.

Let us now consider the case where the displacement at the input of the
system is fixed and the angle of turn (formula (16)) is matched. By using

69

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000100020025-1

FOR OFFICIAL USE ONLY

the relations between the generalized displacements on the left and right
ends of the plate

2= (S = (B V) ttg o (T o (1 ok 1) all) gk,
) Uik == (V = iB,U) g + (S 4 (1 + 1) BaT) ok,
ve get
_ NIN lrmc = 103 (k) < 201 (k) o Gol/go, 21)
where

q==-3-5-(r+p.v)t+.giun+__+v,.
1“—W(S+ﬂn7)(7‘+ﬂa0)—-ﬂiTU+ T + UV
‘h"m(&'-{-ﬂ.?’)’ T +U'

The value of (21) reaches a minimum when r=-qo/kqy. A general idea of the
‘nature of (21) can be obtained as above by examining the case B> w=. After
- passing to the limit we get formulas (17).

:';I"'I Our study shows that the vibrational energy
’ 500 that passes through T-joined plates depends
. strongly on the method of excitation. By
/ol ¥4 properly choosing the coefficient of pro-

portionality between the input force and
torque, we can make this energy close to
zero on any given frequency and in a fairly
wide neighborhood of this frequency.

A

Evaluating the effectiveness of a vibration
7 2 ¢ ¢ damping structure. Let us consider a vibration
damping rod structure that uses the described
effects. Let a vertical perturbing force fg expiwt act on a body of mass m
that rests on n identical cantilever plates of length ! so that the force and
- torque that act on the end of each plate are related by expression (1). The
degree of vibration damping is evaluated by the coefficient of transfer of
the force T-—|F0/fg|, where Fy is the complex amplitude of the force that
acts on the base. It is natural to evaluate the effectiveness of vibration
damping by comparing this coefficient to the coefficient of transfer of a
system of the same static structure in which the cantilever plates are
replaced by springs. As implied by the expression for the coefficient of
transfer of a unit plate (15), in the absence of damping we can make the
coefficicnt. of transfer T vanish on any predetermined frequency by matching
the parameters of the plate and the value of coefficient r. The required
static stiffness is ensured independently by appropriate choice of the number
of plates and (or) their width. Thus the given system removes the usual
contradiction between the requirement of sufficient static stiffness of the
shock absorber and the requirement of vibration demping. Simple calculations
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show that the mass my of the plates 18 related to the mass m of the object
by the formula

malm = & (0o/0g)",

where wy 18 the natural frequency of the reference system; w, is the fre-

tquency on which damping 18 required; the values of the coefficient u are
taken from the graph in Flg., 2,

Vs To account for damping in the material, no
- fundamental difficulties are involved: instead
2 of the Young modulus E, we must introduce the
complex modulus BE=E(1-1in). ‘fThe damping
i Fig, 2 factor n will be taken as independent of
- sk frequency. The caleulations of the coefficient
of transfer were done on a computer over a
wide frequency range for different parameters.
] b : The teble summarizes the lower limits of
7 0,)1 v; 1"/1 vibration damping over the frequency range

0.98uw, Sw<1.02u,, w, = 2wy (in decibels with
respect %0 the reference system). The results show that the use of a shock

absorber of the described type in a support structure can be an effective
means of vibration demping: eppreciable suppression is realized in the
vieinity of frequency w*. At different r/l the frequency responses may
differ considerably. 'e value of r/l should be selected on the basis of
the nature of the perturbation, the desirable features of the frequency
response and structural requirements. Considering the comparatively great

"
ot .
0 0,0t { 0,02 | 0,03 | 0,06 | 0,05 | 0,06 | 0,07 003000 0,10
0,1t 27,9] 27,7 27,01 26,1 25,0| 24,0 23,1| 22,2| 21,4 20,1] 20,0
0,15 | 28,9/ 28,71 28,0 27,0 26,0f 24,9 23,9| 23,0{ 22,2} 21,4 20.6
- 0,2 18,3 18,0 17.3| 16,4| 15,4 14,4 13.5] 12,7} 12,0 11,3] 107 b
0,25 | 30,4 30,1 29,5 28,5] 27,5| 26,4| 25,4 24,5 23,6 22,81 22,0
0,3 30,3| 30,8| 30,1 20,2] 29,4f 27,1| 26,1} 25.1] 24,2] 23.4] 22,7
0,35 | 28,4] 27,8 27,1} 26,2 25,2| 24,1 23,1 22,4} 21,3 20.5 19,7
0,4 23,71 23,5| 22,8] 21,8 20,8] 19,7| 18,8] 17,8 17,0 16,2{ 15,5
0,45 | 16,6) 16,4 15,7] 14,8 13,8] 12.8| 11,9} 11,1} 10,3| 9,6 9,0
0,5 |—12,6/]—8,7|—4.8{—2,6|—1.3|—=0.3] © 0,4 0,71 0,8 1,0
0,55 2,90 2.8 2,5 2,2f {,9| 1,7 1,51 1,4 1,3] 1,2 {1
0,8 8,00 8,6 8,01 1,21 6,4 5,6 4,8] 4,2/ 3,7| 3,2 2,9
0,85 6,6 63| 58! 54| 43| 3,7 3,1| 2.6 2,2] 1,9 1,6
0,7 [=11.5]=9,4| =61 —4,1|=3,0]—=2,2] —1,7|=1,4]—1,2{—1,0 —0,9
0,75 |—12,0] —9,4{—8,3| —4,3|—3,1| —2,3| —1,8|~1,4[—1,2]|—1,0] —0,9
0,8 9,1 89 83| 7,47 66| 57| S5.0| 4.4 3.8] 3,3 2,9
0,85 14,41 14,2] 13,5] 12,8] 11,8] 10,6] 9,7| 8,9 8,4| 7.4 6.7
0,9 A7,4) 17,2] 16,5( 15,6 14,5| 13,5] 12,5| 11,6] 10,8] 10,4 9,4 _
0,95 | 19,4} 19,21 18,5| 17,5| 18,5} 15,5! 14,5} 13,5 12,7 11,9] 11,2
1,0 20,8 20,6| 19,9| 18,9 17,9] 16,8{ 15,8| 14,9] 14,0| 13,2| 12,5 B
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weight of vibration damping systems thut operate in the wave region, they
should be used in frame structures. It is feasible to improve the effec~-
tivenenn of vibration damping systems of the glven type by using inhomogeneous
rods with lumped masses and composite systems. For instance if we replace

a homogeneous plate by a plate with periodically placed weights, we ean
reduce thg transverse dimension of a vibration damping system by a factor

of (L+£)72, where f ls the ratio of the mass of the welghts to the mass of
the plate. A comparison with other known designs of vibration damping
supports shows that a system of the given type may be preferable, especially
on frequencies close to the natural frequency of the system.
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ON THE OPERATION OF RUBBER-METAL SHOCK ABSORBLRS

R. I. Veytsman, W. M. Ostapishin, G. V. Tarkhanov

An investigation of rubber-metal shock absorbers in the low-frequency band
of 103-10~2 Hz is of interest since the question frequently arises in

computational practice concerning the extent to which low-frequency dynamic
- characteristics can be considered as static.

An investigation was made of the characteristics of shock absorbers of three
typrs (Fig. 1): angle (a), ring (b) and & cube to which end blocks are
vulcanized (c¢). In the frequency region up to 1 Hz the strain curves were
recorded on a pulsator with harmonic change in the load relative to the pre-
determined average value. The static stiffness was taken as the ratio of
the peak-to-peak amplitude of the load to that of the deformation on the
first loading cycle on a frequency of 10-3-10-2 Hz, while the dynamic stiff=-
ness was taken as this ratio after stabilization of the hysteresis loop.

The loss factor was determined from the ratio of the area of the hysteresis

T2
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loop to the smplitude of the potential enerpy of deformation of the shock

nhorboer,

Stabilization of the hysteresis loop occurred after 15-20 loading cycles.
The shape of the loop is close to elliptic, enabling representation of the
stiffness of the shock absorber in complex form Co(l +14/n), where the

%ogarit?m%c decrement of vibrations A is equal to half the loss factor
Ref. 1])&

Above 1 Hz, stiffness was determined from the natural frequency, while the
logarithmic decrement was determined from the width of the resonance pesk of
the investigated system.

On frequencies of 1-30 Hz the system consisted of a shock absorber with a
weight G that was excited by a vibrator through a force sensor.

On higher frequencies the studies were done in a frame where the weight was
pressed between two shock absorbers and excited by vibrators. At the same
time the system was compressed by a predetermined static load.

The studies showed that in the frequency range from 10~3 to 10 Hz the loga-
rithmic decrement increases smoothly from 0.2 to 0.3-0.4, and when the
excitation frequency is raised to 103 Hz it reaches a value of 0.8-1. The
logarithmic decrement increases by no more than 10-20% with an increase in
the static load from zero to double the rated value.

[ )
orlan When the static load is increased from
P4 E{ 50 to 100% of the nominal value, dynamic
Fig. 2 s, sz stiffness of the rubber-metal cubes and

o0 47 angle shock absorbers increases by

2+ Vi 20-30%, while in the ring shock ab-
' b7 ] sorbers the stiffness remains almost

/" unchanged.

The chenge in dynamic stiffness with
7 'I , ' f;equincyiis dgelbothftohthe :gy that
/ the elastic modulus of the rubber
g 4r 7 4 /W/zﬂl depends on frequency, and to the change
' ' in the ratio of the height of the rubber
mass to wavelength. The experimental values of this dependence are of par-
ticular interest in the low-frequency region, where wave effects are still
weak. The relative values of dynamic stiffnesses Ce/Co,01, where f is the
excitation frequency, increase with frequency (Fig. 2): Cr/Cq o1 =
(0.15-0.25) 1g (100f) +1 for £ <100. This change in stiffnesses corresponds
?pproxi?ately to the change in the elastic modulus of rubber with frequency
Ref. 2].

For rubber-metal rings (b) and cubes (c) the dynamic stiffness on a frequency
of 0.0l Hz is approximately equal to the static value, but for an angle shock
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nbnorber (n) 1L exeesds the ntable vnlue by a factor of 1,65, Tus the
hyuberenly propertlen ol rubbur-metal shock absorbern with harmonle exeltntlon
can be taken into consideration bg introducing u complex modulus of elastieity
beginning with frequencies of 10~ «10=2 Hz, 1In this connection the modulus

of stiffness and the logarithmic decrement must be determined from the
steady-state strain curves after 15-20 loading cycles. The ratio between
static and dynamic stiffnesses depends on the type of shock absorber.
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EVALUATING THE LOADING CAPACITY OF AN AIR-CUSHION SUPPORT
R, L. Veytoman

In recent years, alr-cushion supports have come into use in a number of
branches of engineering. The air flowing under the support raises it above
the surface of the bed, enabling movement of heavy equipment installed on
supports without great effort. The use of these supports requires determi-
nation of such characteristics as loading capacity, static and dynamic

- stability. In this article I will discuss the engineering evaluation of the
loading cepacity, which is the foremost characteristic to be determined in
choosing & support.
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The devicea considered here [see for instance Ref. 1) contain an elastis
annular plate or an axisymmetric shell in the lower part. Alrflow takes
place radially in a gap with a height that depends on the lift of the
support as a whole and on the local deflection of the plate due to the dif-
ference in air pressures above the plate and in the gap beneath it. The
most difficult problem is to determine the total foree F acting on the plate.
To determine F it is necessary to solve the interrelated problems of defor-
mation of the plate and change of the air pressure in the gap.

The law of change in air pressure lengthwise of the gap depends on the type
of flow. It will be assumed here that the air velocity is low and that flow
is leminar. Without complicating the problem with questions of calculating
three-dimensional flow and the theory of shells, let us consider the simplest
example. We will assume that the plate is initially flat, and its width 2

1s so much smaller than the radius that the problem can be solved as a plane
problem. Flow is taken as plane-parallel. The edges of the plate are tasken
as fixed.

The lower part of the figure shows the computational model: in the cavity
above OX over the plate, the alr is under pressure pp. The air flows through
orifices close to the edge of the plate x=0 into gap OABX, and here it
expands from p=pg at x=0 to p=0 at x=1. Since the size of the gap 8(x)
changes smoothly, we use the law of flow of a viscous fluid between parallel
walls:

dp/dx = —12 pQ/6°.
The deflection y of the plate is determired from the equation

EJd'yjdxt = p, — p.
The notation used: Q--volumetric flowrate per unit of width of the flow;
u--coefficient of dynamic viscosity of air; EJ--stiffness of a unit of width
of the plate; F--force acting per unit of width of the plate; Ry--concentrated

force acting on a unit of width of the plate in section Xk where the plate
is in contact with the support.

Let us use dimensionless variables and parameters:
S=xl =0 -y A= EIS/pl
h=120Q/pS5 B = — EJSY12u18Q; = Fip,l.

The sought relation between parameters A and Y can be found after solving
the main nonlinear equation

fdbn/dE® = Yn?,

Let us use the notation

13
hE =B h=Th0).

(]

Using the conditions of the problem on the edge £=0, we write the integrals
of the main equation
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_ The conditions of fixing on the edge £ =1 give equations for determining
the coefficients C; and Csp:

6C; + 3C; = — Jo + 3, —3J5 + I, G
12C, 4 4Cy = — Jo + 4J; —6/y + 44— Js Q)

The method of successive approximations can be use<(1 so solve the problem.
After assigning the initial approximation, e. g. n 0 =1, we determine Jp=1,
and find the dimensionless gradient A=1/Jy from (1). The initial gap A is

an assigned quentity, and we can determine B=-A/A. From (5) and (6) we find
tlee coefficients C; and C;. Now from (4) we determine the first approximation
n 1) We get the next approximation in a similar way. After n has been
found, the force y=1-J;/Jy is determined from (1) and (2). This ps‘ocedure
can "2 successful only in cases where none of the approximations n(l (g)
vanishes anywhere on 0 <€ <1.

Let us note the good convergence of the iteration process. For the force
parameter Yy we cen limit ourselves to the first approximetion. Two approxi-
mations are sufficient for flexures n. For hydraulic drag A, the necessary
_ number of approximations increases with a reduction in the parameter 4 of

- the gap, where A approaches the limiting value Ax. It can also be noted
that the position of the throat of the channel (i. e. the value of £ where

n has & minimum) is almost independent of A. The quantity vy is also little
dependent on A.

When A <Ay the plate touches the base at £=£&y, and flow is_blocked. The
deformation of the plate in this case follows the equation nlV =0 on section
0s¢E<Ek, and nIV=-1/A on the section £y <€ <1. Assigning the value of &y
and using buundary conditions r =1 and n'=0 in cross sections £=0, £=1,
and also n=n'=0 in cross section & =gy, we determine n_ at & <&k, and n,
at £25y. The requirement of continuity of the moment n"=nj at £= £y de-
termines the relation between A and £y under conditions of contact. To
determine the force parameter it is necessary to account for the reaction of
the support at the point of contact, which is proportional to the difference

1

nt-n" at §=gx, accordingly y=1-& - (n}-nl)a.
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The upper part of the figure shows y and 1/A as functions of A. We de-
termine the loading capncity of the support by adding the force that acts
on the plate to the forces that are crented by the pressure differentials
to obher purty o the device.
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Marine Equipment" in: "Metody vibroizolyatsii mashin i prisoyedinennykh -
konstruktsiy" [Methods of Vibration Demping of Machines and Attached
Structural Members], Moscow, Nauka, 1975.

PROBLEMS OF ACOUSTIC DIAGNOSIS
Yu. I. Bobrovnitskiy, M. D, Genkin, M. F. Dimentberg

One of the new areas of science that has been formulated in the last decade

is acoustic diagnosis, 1. e. dlagnosis of the state of an investigated
object from its noise or vibrations. The development of acoustic diagnosis
has been fostered to a great extent by the development of methods of analyzing
statistical signals (by using computers), and also by the development of such
fields of science as identification of dynamic systems and pattern recog-
nition. Some of the results found in these fields have been used directly

in acoustic diagnosis. However, the particulars of the objects and goals of
the study here require the development of new approaches and methods. It is
no accident that the most significant advances in acoustic diagnosis have Z
involved the development of specific research techniques,

The class of problems of acoustic dynamics is constantly expanding. 1In
addition to "traditional" problems associated with checking the state of
engineering facilities, these problems include many questions of investigation
of the oscillatory properties of systems of various natures, including bio-
logical systems. With respect to their goals, all these problems can be
divided into five interrelated types, partly considered in Ref. 1, 2. 1In

this paper we give their characteristics and briefly review the principal
methods of solution and results that have been found.

Estimates of the structural parameters of an engineering object. This is
the most important and general problem from the standpoint of applications.
It 1s also most typical for machines and mechanisms. Tts purpose is the
measurement (evaluation) of structural parameters (or in other words --
parameters of state, internal parameters) of the investigated object with
respect to the characteristics of its acoustic signal. Sometimes the problem
also includes classification of the object with the measured parameters in
some state or another. The signal characteristics are termed informative
diagnestic features. Naturally the structural parameters to be measured
must influence sound formetion within the object as otherwise their changes
could have no effect on the acoustic signal or diagnostic features.

T7
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e use of nolse and vibration signals to diugnose the state of machines and
mechanivmo on u velentific basln was apparently first described in Ref. 3,

where n relutlon wan eotabliched between errors in gear manufacture and

nuyyembly on the one hand, and the speectra of acoustic signals on the other.

It wan shown that the mean square levels of vibrations or noises in certain -
spectral regions are typlenl features that can be used with a certain degree

of accuracy to evaluate the quality of gear manufacture and assembly. These

results were then further developed and used in many fields of engineering,

in particular in the motor vehiele industry to develop systems of acoustic

diagnosis of transmissions and other parts of motor vehicles. Ref. U contains

a general formulation of the problem of evaluating the structural parameters

of machines and mechanisms and presents simple schemes for acoustic diagnosis

of machine components. Subsequently a large number of papers were published

dealing with the investigation of possibilities and the development of

facilities for acoustic diagnosis of engineering objects of a variety of types.

A survey of the most important of these works is given below in a discussion

of the major approaches and techniques in solution of the given problem. _

The general assumptions for the formulation of diagnosis in evaluating the
structural parameters of an object are outlined in Ref. L4, 5. Mathematically
the problem reduces to solution of the system of equations

Py filan ay ..o an) i=1,2,...,m, (1)

that establish the relation between the independent diagnostic feasures Pj

and the independent internal parameters of the object aj via functions fj.
Here the features Py are known, and it is required to determine the quantities
aj.

Obviously the solution is determined by the form of the functions fj that
can be found from a theoretical examination of the mechanism of sound for-
mation within the object, or in an experimental way. In the latter case

it is convenient to represent them as polynomials of finite degree in a

that approximate real relations (1), For instance, limiting ourselves to a
linear relation and considering only the two parameters aj, az, we can write

P = fio + fuay + fiaa: + R, ‘ (2)

- where f;0, fi1, fij2 are constant coefficients, Rj =fj3a3+... is the part of Pj
due to the influence of the parameters a3, ay,..., an. The quantity Ri can be .
considered constant only in those cases where features P;j are independent of
unconsidered paremeters a3, ay,..., 8 or when these parameters remain un-
changed throughout the entire course of diagnosis. Otherwise the value of Rj ’
will vary from experiment to experiment, which is equivalent to an increase
in the errors of measurements of Pj, and accordingly the calculations of
parameters a; and ap. Errors of diagnosis are described more completely in
Ref. 6.

Let us examine in more detail two points that are of practical importance:
a) how many features are needed to define parameters aj,..., ax when relations
(1) or (2) are known; b) how many different states of the object with known
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values of‘ﬁl, 825400y 8k must be assigned so that they can be used to de-
termine the specific form of polynomial relations (2). :
The first question has no single answer. 1In the case where the features Py
are monotonically dependent on the parameters 81y 823404y Bk, k features are
suffieient. In the presence of extrema, the number of features increages.
For instance in the case of two parameters when there is one extremum we can
limit ourselves to a quadratic dependence of P; on a) and az; then the
maximum number of features is five. This is equivalent to saying that
relations (2) in the given instance are linear equations in five linearly -
independent unknowns ajy, ay, af, ajay and af,

The answer to the second question is simpler. Experimental determination of
q unknown coefficients in expansions of type (2) requires assignment of q
different states of the object with unknown values of internal parameters.
For quadratic polynomials of the parameters this number is q=1 +2k+0ﬁ-
When cubic terms are considered, the number increases to q=1+3k +k(k 1)+
Cﬂ-*Cﬁ and so on, In the ideal case, one feature depends on only one param-
eter. 1In this case the least number of features and preliminary tests are
needed for determining the specific form of the relations.

The selection of the informative features is the most difficult part of the

given problem of acoustic diagnosis. In the case of unsuccessful choice of

the features, their changes from an increase or reduction in the parameters

ay may be insufficiently large, as a result of which the incidental changes

in conditions of measurements may be perceived as a change in the internal

state of the object. In this case the features are said to have low infor-
mativeness or low sensitivity with respect to the given structural parameters
(8Py/9ay). The main requirement for a diagnostic feature is maximum sensi- -
tivity to one of the structural parameters and minimum sensitivity to all

the others [Ref. 7].

In determining the most informative diagnostic features it is necessary to
know the structure of the acoustic signal, end to do this a detailed in-
vestigation must be made of sound formation inside the objJect of diagnosis.
Knowing the structure of the signal and the way that its different components
depend on the internal parameters of the object we are able to find the best
features and construct a model of the signal that is equivalent to the actual
signal with respect to the given features, or to design a circuit for forming
a model of the signal, i. e. to construct a model of the object of diagnosis
a3 a sound generator. Thus a most important stage in acoustic diagnosis of
the state of an object is the construction of its acoustic model of diagnosis.
By such a model we mean a circuit that contains sources of random and (or)
deterministic signals, and also linear and nonlinear elements, a signal being
formed at the output of the circuit that is identical to the acoustic signal
of the object to be simulated with respect to the set of diagnostic features.
The characteristics of the sources and component elements of the model bear

a one-to-one relationship with the structural parameters to be measured in -
the object. These parameters are measured (evaluated) by identifying the -
obJect and model with respect to closeness of diagnostic features. ’

9
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The neountic models of dlagnosis used at the present time can be arbitrarily
divlided Into two types (determintuvtle and statistical) depending on the kind
of ulpnaly that are used.

The deterministic models have been developed more than others. Associated
with these models are the most significant advances in the field of acoustic
diagnosis of actual objects., The output signals are deterministic periodic
functions: periodic series of pulses caused by collisions between parts,

or harmonic functions associated with the rotation of parts of the machine
or mechanism. The informative diagnostic features here are amplitudes,
duration and times of appearance of pulses, and also frequency, amplitude
and phase of harmonic signals. As a rule, the relation between these features
and the internal parameters is determined on the basis of an analysis of the
physical processes of sound formation without the aid of cumbersome ex-
periments. Models with deterministic signals have been substantiated and
glve good practical results for comparatively low-rpm machines with a small
number of internal sources of sound in which it is possible to distinguish
the pulses caused by separate collisions of components. Such models are
used in acoustic diagnosis of electrical machines [Ref. 8], mining machines
[Ref. 9], internal combustion engines [Ref. 4], bearings [Ref. 10] and many
other objects [e. g. Ref. 11-13]. Let us mention that for deterministic
models there are a number of hardware realizations of disgnostic systems.

It is much more complicated to set up acoustic diagnosis in the case of
high-rpm complex machines and mechanisms with a large number of internal
sources. In these devices the vibrations and noises have a continuous
spectrum where there are no pronounced discrete components and the indi-
vidual pulses fcllow each other so closely that they merge and become in-
distinguishable. The acoustic signals in this case are random processes,
and statistical models of diagnosis are needed that have output signals that
are also random. For instance the signals of modern speed-reducers are
random. The main sources of vibrations and noises in these mechanisms are
processes of tooth engagement and the errors of gear manufacture, installation
of gear trains, imbalance of shafts and the like that influence these pro-
cesses. The problem of sound formation here is very complicated and is con-
sidered in many articles (e. g. Ref. 14-18) in connection with problems of
acoustic diagnosis. On the basis of existing concepts a diagnostic zodel is
presented in Ref. 19 for the simplest spur gear train with consideration of
the following factors: profile errors of engagement, variasble stiffness of
engagement, errors of the main pitch and deformetion of teeth that lead to
collisions as the teeth engage. In this model the variable stiffness of
engagement is represented by a step function of time with random amplitudes
and random duration of the intervals of one-couple and two-couple meshing,
the amount of deformation of a pair of teeth is modeled by the sum of two
harmonic signals with random emplitudes and phases, and impact excitation is
characterized by a series of momentary shocks with random amplitude synchro-
_ nized with random moments of tooth engagement. The diagnostic model of a
pair of teeth is thus represented as a linear system with random paremetric,
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kinematic"énd pulse excitation. In a number of cases the characteristics of
these random quantities can be selected in such a way that the output signals
of the model become equivalent to the signals of an actual gear couple with
respect to a whole series of diagnostic features [Ref. 20]. It should be
noted that the informative features here are rather complex signal charibcter-
istics (bispectra, bivariate probabllity distribution functions, lines of
regression, (kepstry] and so forth) that can be determined only by using
high-speed digital computers. Analysis of some of them shows that in speed-
reducing mechanisms there is a strong nonlinear relation among tlie different
components of the acoustic signal [Ref. 21]. This shows that therc are
nonlinear elements in real objects and that it is necessary to further
improve the model of diagnosis of gear meshing.

Another complicated object of diagnosis that is considered in Ref. 22 is an
aircraft engine. On the basis of anelysis of the fine structure of acoustic
signals by probabilistic methods the authors have constructed a model of
diagnosls that contains sources of random noise and sinusoidal signals as
well as linear and nonlinear elements. The model is the equivalent of an
engine with respect to a number of features that characterize bivariate
probability distribution laws and nonlinear correlations of different signal
components. This statistical model can also be classified as phenomono-
logical since it does not reflect the physics of processes of sound formation
inside the object.

In conclusion, let us mention one more phenomenological model [Ref. 23].
In this model the acoustic signal is represented as an expansion with
respect to the powers of structural parameters with random coefficients.
For instace for one parameter a the signal model takes the form

YO =x0() +ax, () +a* %) + ..., " @)

where xg, Xj, Xz are steady-state random intercorrelated functions with
characteristics selected from the condition of closeness of signal (3) to
the actual signal with respect to certain features. If the features selected
are the mean square level and components of the Laguerre spectrum of the
signal; the model is amenable to simple hardware realization. Such a device
was made and used to diagnose one of the paremeters of a speed reducer

[Ref. 24]. sSince "instructing" the device requires experiments with known
states of the object, which may be large in number as demonstrated above,
this model (and device) can be recommended for diagnosis and continuous
acoustic monitoring of large machines and mechanisms with complicated
acoustic signals.

Evaluation of stability reserve, wear, reliability. The next class of
problems in acoustic diagnosis consists in evaluating the stability reserve
of a machine or structure based on analysis of acoustic signals. Let us
assume that in the space of paremeters of the system aj, ap,..., an there
exists some boundary of the region of admissible working modes such that the
condition of stable operation is determined by an inequality of the form
F(ay,-++, 8y) >0. It is required to evaluate the quantity F, which it is
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natural to call the stability reserve, on the basis of analysis of oscillatory
processes that arise in the system in the normal mode of operationy in this
cage the values of the parumeters a),..., an are unknown; however, there is

. n dynnmle model of the nynbem that deflnen the form of Lhe functional
dependence ol 1 on wy [har, 5], (H'vnurnc Lhe eholee off the Manction I in
ulways ambiguous (e, g. the quantity 72 can also be considered the stability
reserve) however, this circumstence is insignificant from the standpoint of
most of the applications where this characteristic can be used.

Quantitative indices of the stability reserve are used first of all for
comparative evaluation of the stability reserve of different systems that
are obtained when certain design modifications are made. In the second
place, on the basis of experience in the practical utilization of systems
of the given class quantitative norms can be set up for the admissible
values of the stability index. In the third place the stability reserve as
a rule characterizes the degree of sengitivity of the system to external
factors. Of interest in this respect for instance is Ref. 26 where a clear
correlation is experimentally established between the stability reserve
(with respect to rpm) of a circular saw and the quality of the saw cut.
Let us also note thet if it is possible to introduce special signals into
- the system during testing we can even do away with assigning the form of the
function F(al,..., an) and express the stability reserve directly in
terms of the parameters of the useful signal. For instance in Ref. 27 it
was suggested that the system be set into self-oscillation with limited
amplitude during testing by using controllable positive feedback; in this
case the value.of feedback gain corresponding to the limit of self-excitation
of oscillations can be used as the stability reserve.

However, here we consider some examples of evaluation of the function F for
a system with unknown parameters aﬁ, i=1,..., n, under conditions of normal
operation in the presence of some 'natural" wide-band random perturbations.
The simplest example is a system model described by an ordinary differential
linear equation with constant coefficients. In this case it can be assumed
that F=op, where o, is the minimum among all values of the real parts ay
of the roots Mg of the characteristic equation of the system. The quantity
- ap can be evaluated by correlation or spectral analysis of the process x(t)
at the output of the system. If the natural frequency Qk of the system
(Ak ak-+19k) are sufficiently far apart, the best estimate will apparently
be given by the following procedure: x(t) is passed through bandpass filters
- tuned to frequencies Q, and the envelopes at the output of each filter are
h analyzed. For instence one can evaluate oy from the normalized correlation
function r(t) of the envelope: without consideration of the influence of
the filter r(t) ~exp(-a,T) and at t that are not excessively small, the
filter has little influence. We can also evaluate a from the average period
or the average number of extrema of the envelope (see the corresponding
relations in Ref. 28, 29); such methods afford simple hardware realization
and are convenient for fast operational enalysis (without use of a digital
computer). When methods of this kind are used it is important to select the
bandwidth A of the filters in the best way: the smaller the A the better will
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be the "cutoff" of oscillations with respect to "extraneous" degrees of
freedom with frequencies Qk#!hﬁ however in the case of A that are too small
(comparable in order of magnitude with ap) the useful signal is strongly
distorted and the estimates of oy are imprecise.

As another example [Ref. 25, 30] let us consider the model oi' a system
described by the equation
.

% 4 20k -+ Q2% (1 A sin 24) = ¢ (&), . )
where &, A, |v-@| are small constant quantities.

The condition of paremetric stability of system (L) can be written as
po=AQY2 [(v* — Q%)% 4 dvied)h < 1,

On the other hand, as shown in Ref. 25, 30, the probability density funetion
w(¢) of the phase of process x(t) can be represented as

W () = C/ [1 —  cos 20 — V)],

where C, ¥ are constants, so that the parameter p can be evaluated as a
"coefficient of nonuniformity" of the phase

B o= (Wnax — W)/ (Wmax -+ Wmin)-

The quantity F=1-u? can be taken as an index of stability reserve.

The second problem in acoustic diagnosis of this class is determination of
the degree of wear of machine components in normel operation. Wear is
accompanied by changes in a number of structural parameters of a component.
The main difficulty of the problem is to determine the appropriate function
of the parameters F(aj,..., a,) that would characterize wear. An example of
solution of such a problem is given in Ref. 31, where it is proposed that
the so-called generalized effective error of engagement (deviation of the
transfer ratio from the nominal value) be taken as the characteristic of
gear quality. This error is related in a simple way to the characteristics
of the autocorrelation function of the acoustic signal.

An analogous formulation is possible for the problem of evaluating the

degree of reliability (strength) of given components of engineering objects.

As a rule, failure of a component is preceded by a continuous change in =
structural parameters and accordingly in the characteristics of the acoustic

signal (for instance the intensity of ultrasonic vibrations with the formation

of cracks in a materiael). It is obvious that the approaches described above

can be applied to solution of this problem as well.

Problems of classification of states. The goal of the problem of acoustic
diagnosis of this class is to use vibration or noise signals to determine
what state an investigated object may be in out of several possible states,
or to which of several possible objects an acoustic signal may belong.
Typical examples of such problems are found in quelity control of finished
items (adJusted-unadjusted, suitable-unsuitable), classification of ship
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nolses in hydroacoustics or heart noises in mediecine and so forth. Problems
of the quality control type are typlcal for machines and mechanisms. In
this connection the "machine in adjustment" state can be broken up into
several "substates" that are characterized for instance by a definite
service life. In the limit with increasingly finer gradations we arrive at
the problems considered above,

The classification problems in such a formulation are essentially problems

of pattern recognition [Ref. 32], or more precisely recognition of sound
patterns (the 2entral problem in this area of sclence is automatic recognition
of speech sounds [Ref. 33]). The usual approach in solving them is as
follows. The aggregate of features of an acoustic signal (Py, Pp,..., Pp)
forms & so-called image (n-dimensional vector) in contrast to the pattern

to which the state of the machine or mechanism corresponds. Compact regions
correspond to patterns in the n-dimensional spate of images. The problem

is to define these regions on the basis of some kind of similarity of images.
Frequently a standard image is put into correspondence with each pattern.

Then an investigated image is compared with all standard images and classified
with the pattern that hes a standard closer than the others with respect to

a selected measure of similarity.

In acoustic classification of the states of machines and mechanisms the mean
square levels of vibrations on characteristic frequencies of the object are
most frequently used as features, e. g. on the tooth frequencies of speed
reducers [Ref. 9, 34, 35], or the amplitudes of periodic components in the
function of autocorrelation of vibrations [Ref. 4, 36]. The recognition of
states is accomplished by using the threshold values of levels (over the
threshold means "machine out of adjustment”) thaet are set after examining a
sufficient number of machines in known states. More complicated character-
istics of the signals and more complicated functions can also be used as the
features and as the measure of similarity of images [Ref. 1, 32, 37].

Another approach that is used in solving problems of classifying states is
based on recognition with respect to conditional probabilities [Ref. 32, 38].
In this procedure, a matrix of conditional probabilities w(P;/Vg) is set up
during the instruction period, where Pj is some value of the i-th feature,
Vk is the k-th state of the investigated object. Then the elements of this
matrix are used to determine the most probable state of the object that
corresponds to predetermined values of the features. This approach involves
a large number of instruction experiments needed to find the elements of the
matrix of conditional probabilities.

Let us also take note of methods that involve conversion of acoustic images
to visual images [Ref. 33, 39]. This enables us to use algorithms developed
ia the theory of visual pattern recognition or to utilize more fully the
capabilities of a human operator [Ref. LO].

Separation of sources of vibrations (noises). A very important problem in
acoustic diagnosis is the so-called problem »f separating sources of
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vibrations; the Job is to detect the sources, and may include quantitative
evaluation of the contribution made by each source to the observed vibration
process, First let ug consider this problem in the qualitative aspect
where 1t is required to distinguish the predominant mechanism of excitation
- of' vibrations.

In Ref. L1, 42 an examination wes made of some problems of recognition of
types of quasilinear oscillatory systems with one degree of freedom on the
basis of statistical analysis of the processes in systems.

The systems examined were of the form

R h (B Qx4 0= T, 6
Fodh(x ) +Q0x (1 +Mcos 2vf) = (). (6)

Criteria of recognition are based on analysis of the probability density

. functions w(y) -- the square of the amplitude y(t) of process x(t) -- and
w($) -- the phase ¢(t) of process x(t). Let us introduce the following
classification:

I. Self-oscillatory system -~ system (5) having a stable periodic solution
- ‘ when £(t) =0, g(t) =0,

II. System with external rendom excitation -- a system of type (5) in which
- Y>e S>> (Y>u where always x(t) =0 when £(t) =0, z(t) 20. Here <y>; is the

average value <y> of the square of the amplitude when £(t) =0, <y>g is the
- value of <y> when g¢(t) 0.

III. System with parametric random excitation -- a system of type (5) in
which Yy <€ <¥}: where always x(t) =0 when £(t) 20, z(t) =0.

IV. System with periodic and random external excitation.

V. System with periodic paremetric and random external excitation (6) having
a stable periodic solution when r(t) =0.

The criteria of pairwise recognition of systems of types I-V are summarized
in the table. Here the amplitude criteria are denoted by Y, where Y means
that the function w(y) decreases monotonically for ell y >0, Y means that
w(y) has a finite interval of increase. The phase criteria are denoted by ¢,
where the subscript associated with the ¢ indicates the number of maxima of
the function w(¢) on interval [0, 2m). Each cell of the i-th line and the

_ J-th column (i, J=1I,..., V) gives the criteria according to which the

i hypothesis of membership in class i is valid as opposed to membership in class

- J. [or instance, according to cell II, IV, the satisfaction of conditions

’ ¢p, Yo indicates that the system belongs to class II rather than to class IV.
Batisfaction oi' conditions Y;, ¢; shows in accordance with cell IV, II, that
th system belongs to class IV rather than to class II. The biased criterion

- Y¢) is valid with a condition: it indicates membership to class IV only in
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the case of a sufficlently high relative level of the periodic component of
the oscillations [Ref., 43). ‘e criterion Y; has the same bias for systems
V as well (see Ref. 42, where the limit of monotonic behavior of the function
wly) 18 found).

Let us discuss speclal variants of the criteris Y as applied to systems with
cubic nonlinearity

[fO)Q =20 b >0, B>0,

"

where [(b)= Sh(bsinl), QbcosO)costdl), The criterion ¥3) is of this type: for

- 0 .

the function w(y) found in an experiment two relations are constructed
iy (@1v) = Yy (2oav)] sign (g — yoay) 80d - [y (2v) — Py (20)] sign(y —yo,v) and the
system is taken as belonging to class IV (or V) if relation Y1y (or yy)
i3 closer to linear. Here

Piv () = Inlg"@w (], by ly) = Iny"e y)],

2y = (U — gl ) Sig0 (U — Yo, ),

2y = ( ~ Yo, ) SN (¥ — Yo, v)s
and Yo, 1v, Yo,v &re points of maxima of the functions Yy and Yy respectively.
As far as recognition of systems IT and III is concerned, two simple rough
criteria are possible: we classify a system as III if Yy <€¢Yd (where yp
is the square of the most probable value of the amplitude) and if the curve

8 of 1nw(y) has positive curvature everywhere. The third criterion is that
: the experimental curve be approximated by the theoretical relation [Ref. U1]

- w(y) = Ce™® (x + yyP-2,

where C, o, B, K are constants. When o<1 the system belongs to class III,
and wvhen o >1 -- to class II (the value o =1 corresponds to the limit of
stochastic stability of the linear system obtained from (5) when h(x,x) =2ax.

A\m‘&‘%)nfun:\
I'u(%'vzm

1 i 1 v v

- 1 —~ vy ry ®, 0,
- I Y, - ¥y Va0 | Yo 0
i Yy v - Far ®n Yo @,
v o, Yooy v e, - ¥ @y

. v >, ¥, @, ¥ e, y», Oy -

KEY: 1l--Hypothesis
2--Alternative
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Although these criterla have been derived theoretically only for systems

with one degree of freedom, they can be taken as the basis for analyzing more
complicated systems, checking out the possibilities for extrapolation of this
kind in numerical experiments. For instance in Ref. Lk the feasibility of
determining eritical velocity from the realizations of random vibrations was
demonstrated for the simplest model of flutter (systems with two degrees of
freedom). The criteris given in the table can be used in particular for
determining the predominant mechanism of transverse vibrations of rods in a
longitudinal fluid flow,

The following problem [Ref. 45] can also be classified among qualitative
problems of the "separation of sources.” Assume that oscillations are ob-
served in a multiple-mass system that are caused by a wide-band random load
applied to one of the masses; it is required to determine this mass. It was
shown in Ref. 45 that when the generalized coordinates to be measured are
selected so that the matrix of generalized masses is diagonal, a frequency
w, will be found for any J #k such that the function Yk = 054(w)/ e (w) will
be a monotonically decreasing function for all w>uw,. 'Here g(w) are the
spectral densities of processes that correspond to the subscripts. This -
property can be used as a criterion for determining the number k (which has

been confirmed by anelog computer experiments). However, unfortunately this
criterion is exceptionally sensitive to the hypothesis that there is only one -
source of excitation., The fact is that w, may be greater than the natural
frequencies of the system. Therefore the representation of the system may
be distorted by the presence of an additional source that is weak (compared
to those being det~cted) but high in frequency. In this respect, it is
desirable to get a more "stable" solution for the formulated problem. 4

Quantitative problems of separation (localization) of sources of vibrations
or noise consist in determining the contributions of several simultaneously
operating sources (for instance machines and mechanisms) to structural fields
of vibrations or the atmospheric noise in a room (engine room, machine shop).
Frequently in solving this problem a representation of the room and sources
as an (n+1)-terminal network is used. Its n inputs on which steady-state
random signals xi(t) of the sources are given are connected through linear -
links that have pulse transfer functions hi(t) to an adder at whose output

(the n+1)-th terminal) a signal is formed at the observation point:

W

n

, _
2) =3 \ hit—0)x(©0)do+5 ), U -

=l o

where £(t) is noise uncorrelated with x;(t) that is caused by extraneous
sources.

The problem was first solved for the case of statistically independent sources
in a medium without dispersion for which the pulse transfer functions have

the form hj(t) =hjé(t-Ti), where the hj are the transfer coefficients,

6(...) is the Dirac function, Ty are delay times [Ref. 46]. The contributions
Wi of the sources to the energy of the output signal z2 (the line denotes
time-averaging wherever it occurs) are calculated in terms of the maximum
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values of the functions of mutual correlation of the signals xq(t) and z(t):
Wy == W0 = | 2% (T)) | ¥ ¥,

For arbitrary functions hy(t) and independent xj(t) the problem is solved
analogously with replacement of the correlation functions and the mean
square levels by the corresponding spectral densities [Ref. h7]:

Wi (o) =| H; (0) | *Fy (0) = | Siz (0) | ¥Fi (o),

where w is angular frequency, Hj(w) is the spectrum of the function hy(w),
Fii(w) is the energy spectrum of signal x;(t), Syz(w) is the mutual spectral
density of signals xj(t) and z(t). For the case of correlated sources,

the solution of the problem consists [Ref. 48] in determining the quantities

n
Hy(w) from the system of equations Sn(m)==gﬂ Hp(0) Fie (0), where 1=1, 2,..., n,
=1

Fix(w) is the mutual spectral density of signals xq(t) and xx(t), and in the
next calculation of contributions Wy(w) = |Hx(w)|?Fgk(w). The problem was
considered in & similar formulation in Ref. 49, 50 as well.

Use of the solutions noted above for the problem of separation of sources is
- Justified in cases where it is possible to measure the signals xi(t) directly
in the sources. Most frequently in practice there is no such possibility,
and it is necessary to use the readings of sensors located in the space
between the sources and the point of observation as the signals yj(t) that
characterize the sources. In the case of machines and mechanisms such
signals are the vibrations on their frames. The computational scheme here
is represented as an (n+1)-terminal network within which there are n
independent sources with signals xi(t) that are not accessible for measure-
ment. In passing through the linear links, these signals form input signals
that are accessible for observation,

n ’_ .
y,(t)=k21Sh/k(t—ﬂ)xk(ﬂ)dﬁ, i=1,2...n (8
=l

and output signal (7). Despite the independence of signals xj(t), the ob-
served input signals (8) are statistically related due to the presence of
cross connections that are characterized by the transfer functions hjp(t).
In the absence of these connections (hj(t) 20 when i#k) each signal ys (t)
is linearly dependent on only one xi(t), and then the given system reduces
to the preceding computational scheme with independent sources [Ref. 47].
The approximate solution of the problem for the case of weak cross connections
was found in Ref. 51. Corrections are given there for the solution of
Ref. 46. The case of arbitrary connections is examined in Ref. 52. This
work shows that knowing the autocorrelation and mutual correlation functions
of signals (7) and (8) or their corresponding spectral characteristics
enables us to find the contributions that the sources make to signal (T)
only in special cases, e. g. for known functions hj;j(t) [Ref. 53] in a mediun
without dispersion and with infinite velocity of propagation of perturbations
[Ref. 54], when the sources can operste autonomously if only in unnatural
conditions and so forth. However, in the general case these data are
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insufficient for determining the transfer functions, the characteristics
of the sources, and consequently the desired contributions since the re-
sultant system contains 2n% +n+1 unknowns and only (n+1)2 equations. .
Introducling nource-characterizing nignals suxiliary to (8) such as yn+1(t),
Yn+p(t) and o on doen not change mutbters since the addltlonal npeetral- and
correlation churacteristies are linearly dependent on the original charac-
teristics [Ref, 55, 56]. Thus to solve the problem of separation of sources
in the quantitative formulation, in addition to ell possible spectral and
correlation cheracteristics of the measured signals (7) and (8) we need
supplementary date on the investigated oscillatory system that are obtained
without utilizing these signals. As far as we know, this problem has not
been solved as yet in sufficiently general form.

Determining the dynamic characteristics of mechanical systems. Finally, en
important class of problems in acoustic diagnosis consists in quantitative
identification of given elements of a system, i. e. in determining the

dynamic characteristics of these elements on the basis of analyzing input -
and output signals. For systems with lumped parameters this is a classical
problem; it reduces to solution of a Wiener-Hopf integral equation relative

to the unknown pulse transfer function of the system. This problem has been

falrly well exemined in the literature (e. g. Ref. 57); here we will discuss

only certain aspects of quantitative identification that are specific to

mechanical systems. In mechanical systems it frequently happens that the -
input excitation is inaccessible to measurement, although it can be taken as
wide-band. A typical example of such a situation is vibrations of an element
of an elastic structural member stimulated by turbulent pulsations of liquid
or gas pressure. In the general case the problem consists in approximating -
the spectral density of the vibration process by an assigned function.

It should be noted only that in such an identification scheme that does

not utilize measurement of the input signal, severe requirements are made

on the accuracy of measurements and on the duration of the analyzed

realization.

When high-frequency random vibrations propagate in extensive elements of

machines and structural members it is often feasible and advisable to analyze -
the oscillations as traveling waves. Such problems have been studied most
completely for one-dimensional systems [Ref. 49]. Here it is possible to

eveluate the rate of propagation of waves (with respect to the quantity tp
corresponding to the absolute maximum rp of the coefficient of mutual

correlation r(t) of vibrations in two points), the coefficient of attenuation _
(with respect to rm), and also the coefficients of transmission and reflection -
of waves from identical barriers. 1In the case of media without dispersion
such an analysis is done directly for the measured processes. For media -
with dispersion the analysis is done separately in narrow frequency bands
by preliminary passage of the processes through band filters. In this case
the group velocity of wave propagation is found from a series of values of
Tpms while the coefficients of attenuation, reflection and transmission must -
be evaluated with consideration of the reduction in the values of rp due to
"racing" of the wave packet within the limits of each band [Ref. 49]. As one
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of the numerous applications we will mention evaluation of the elastic
characteristics of pipelines with flowing liquid for purposes of diagnosing
cardiovascular disorders [Ref. 58].
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BALL BEARING DIAGNOSIS BY A VIBRATION METHOD
B, T, Sheftel', V. A, Gushchin, G. K. Lipskiy, A. A. Shanitsyn, F. F. Yudin

Spectrograms of ball bearing vibration show a background of a continuous
spectrum against which characteristie discrete components are observed to
vary in proportion to the speed of rotation., These spectral components

arigse decause of deviations of the races from circularity in a pattern called
waviness. To evaluate the vibroactivity of waviness, a spectral method is
used that ennbles the derivation of analytical relations between the param-
eters of the harmonics of waviness and the parameters of the resultant
vibration: frequency and amplitude. On this basis, solutions are found for
the following problems in ball bearing diagnosis:

by a visration method, without disassembling the bearing, the technical
state of the outer and inner rings is determined, which is characterized
by the presence of harmonic components with high vilroactivity in the
spectra of waviness of the races; ‘

Before a bearing has been assembled, the harmonic components of waviness on
the ball races of the inner and outer rings are established (by a vibration
method), and a prediction is made concerning the corresponding frequencies
and amplitudes of vibration of the bearing assembled from these rings;

for each harmonic component of waviness of the outer or inner ring, the

admissible value of its amplitude is determined as a function of vibration
requirements.

The information on the technical state of the ball races of the rings can

be used to select rings for assembling low-noise ball bearings; to determine
the degree of suitability of a bearing under working conditions; to calculate
the vibration of bearing units that arises as a consequence of kinematic
perturbation due to waviness of the ball races of the bearing.

The spectral method of evaluating waviness is to use a Fourier series to
represent the deviations Apx(¢y) of the ball race from circularity

. -]
Apa () = ap + .121 Qy; COS (iPy + @y,

where i =21/1;{ is the number of the harmoniec that shows how many waves of
a given angular pitch Aj{ fit into the nominal circle; axi is the amplitude of
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IH i

. the i-th harmonic of the k-th ring; ayy 18 the phase shift; ap s the average
value of the function Adpg(éy) for the period; ¢k is the polar angle (for the
inner ring k=1, for the outer ring k=2).
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Fig. 1

The set of amplitudes g,y of the Fourier series forms a spectrum of waviness
of the ball race for each ring of the ball bearing. By using the electronic
equipment described in Ref. 1, 2 this spectrum is automatically recorded (as a
probe runs over the surface of the rotating part) in the form of a diagram
(Fig. 1) on which the numbers of the harmonics are plotted along the axis of
abscissas, while the corresponding amplitudes are plotted along the axis of -
ordinates. In this way, the harmonics of even very high numbers can be

- fixed with amplitudes of hundredthes of a micrometre.

'

The vibration frequencies in Hertz of the harmonic components of waviness are
calculated by the formula

fu=im/60  (k=1,2), m
where

ny=nll — U2(1 + t/R));  ny = n/2(1 + rIR).

Here n) and ny are the speeds (in rpm) of the inner (nj) and outer (ny)
rings relative to the separator); R is the radius of the ball race of the
inner ring; r is the radius of the ball; n is the shaft speed.

The vibration emplitudes with respect to acceleration of the harmonic com-
ponents of waviness are determined by the expression

W =: 4r’f :lakh ) 2

which is transformed to
e I 3
A= 700 Qit”y k=i'2- ( )

Since the vibration acceleration in this expression is directly proportional
to the quantity in parentheses, even very small amplitude components ay; of
the spectrum of waviness that could have been disregarded at low numbers of
the harmonics can cause considerable vibration accelerations if they are

. related to harmonics of sufficiently high numbers. Therefore the discrete -
components of the spectrum of waviness should be evaluated from the standpoint
of vibroactivity as a function of the products akiiz rather than with respect
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to the values of the amplitudes agj of these components. To illustrate this,
Fig. 1 shows the spectrogram of waviness of the ball race of the inner ring
of one of the ball bearingn, and we give here the values of the quantities
a4 and ayyi? for o number of harmonics of the spectrum o

i 2 3 18 58 120 i

84y Hm 0.14%0  0.055 0.170 0.052 0.050
akiiz, um 0.56 0.50 55.0 175.0 720.0

As we can see, the harmonics of low numbers (i =2, 3) that are associated
with a flat spot have low vibroactivity with respect to acceleration, while
the 120-th harmonic of waviness, despite low amplitude, has very high vibro-
activity.

Thus the most dangerous from the standpoint of vibroactivity are the harmonics
of waviness of higher numbers.

In machine building, low-noise ball bearings are often required to have a
spectrum of vibration recorded with respect to acceleration at a given
rotational veloecity that is bounded throughout the entire frequency range
by some line, e. g. a sloping straight line with equation

Wmax = F(f) : (4)
This requirement also imposes limitations on the amplitudes of harmonics of
different numbers. After substituting the value of (4) in expression (2),
we get a formula for calculating the limiting admissible amplitude of the
1-th harmonic of waviness -

@y = F (fa))/4r2fR,. ®)

Relations (1), (2) and (5) enable solution of all the problems formulated
above for ball bearing diagnosis. To get the solutions, these relations
must be represented as tables or nomogrems plotted for a given bearing size,
predetermined rotational velocity and vibration requirements.

As en example, Fig. 2 shows a nomogram plotted for ball bearing No 306 at
8 rotational velocity of n=1500 rpm.

Straight lines 1 and 2 on the nomogram establ’ *h the relation between the
numbers of harmonics of waviness of the inner .1) and outer (2) rings and

the frequency { of the stimulated vibration. For instance the 27-th harmonic
of waviness of the outer ring causes bearing vibration on a frequency of

255 Hz, while the same harmonic of waviness on the inner ring causes vibration
with a frequency of 420 Hz.

The parallel straight lines 3 on the nomogram relate the amplitudes of the -
harmonics of waviness, the vibration frequency (number of the harmonic) and

the vibration level. For instance the 27-th harmonic of waviness of the

outer ring with an amplitude of 0.1 um on a frequency of 255 Hz causes

bearing vibration of 55 dB. The reverse relation also holds: in the vibration
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spectrum of the ball bearing the 27-th harmonic of waviness of the outer
ring with amplitude of 0.1 umcorresponds to a level of 55 dB on a frequency
of 255 Hz if the vibration frequency changes in proportion to the speed of
rotation.

Straipht line 4 of the nomogram that reflects the requirements with respect
to vibration imposed on the bearing shows the relation between the
vibration frequency (number of the harmonic) 'and the limiting admissible
amplitude of the harmonic of waviness. For instance in order for the vibra-
tion from the 27-th harmonic of waviness of the outer ring on a frequency
of 255 Hz to stay below the admissible level, the amplitude of this harmonic
must not exceed 0.1l um.
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- Thus the described nomogrem enables solution of different problems in the
diagnoaisbpg a ball bearing. The accuracy of the solution depends on the =
resolution of the analyzer and the scales of the nomogram.
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LOCALLZATION OF ACOUSTIC SOURCES
I. P. Biryukova, A, M., Medvedkov, V. V. Naumova -

Determination of the contribution that individual mechanisms operating as a

group make to the overall acoustic field is usually handled by appropriate i
analysis of synchronous multichannel recordings of signals taken from micro-

phones set up close to the mechanisms as well as at the investigated point

of the field. The signal taken from a given microphone is determined not

only by the physical parameters of the acoustic field that is formed by the _
mechanism closest tothe microphone, but also by the parameters of the acoustic
fields that are induced simultaneously by the working mechanisms. In this

case the signals that are usually taken as steady-state random processes of

second order are statistically related or partly coherent.

Coherence in this case is understood in the sense of the definition presented
in Ref. 1.

Let us introduce the following notation:

wi(t) -- component of the random vector of unobservable signals that corre-
sponds to the i-th source (mechanism);
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x4(t) =- component of the random vector of observable signals that corre-
sponds to the i-th microphone;

y(t) -~ observable random signal of the microphone set up at the given
= point of the acoustic field;

Eid<t) -~ impulse transfer function of the linear system that connects the
i-th and J-th sources;

h(t) -~ impulse transfer function of the linear system that connects the
i-th source to the investigated point of the acoustic field;
t -~ time,

In these definitions, an unobservable signal is understood as the microphone
signal determined by the corresponding parameters of the acoustic field that
is formed by a given mechanism in autonomous operation, while an observable
. signal is understood as a signal corresponding to the superposition of
?coust13 fields that are formed by the combined operation of mechanisms
Ref., 2}.

The Fourier transforms of the signals and the impulse transfer functions will
be denoted by the corresponding capital letters.

A schematic of the formation of observable signals in the case of N sta-
tistically independent sources for N=6 is shown in the diagram on the

- preceding page, where the time dependence of the signals is not indicated.
Symmetric dynamic systems are considered for which Gy, (f) =Gji(f)’ and it
is also assumed that G;;(f) =1, where f is frequency.” This ensbles us to
get an exact solution of the problem in the frequency region. We will look
for the solution on the basis of the example of two acoustic sources; the
case N>2 can be examined in an analogous scheme.

In accordance ,with the diagram we write

3 7
., A\
] 5= 3 Y gu(en(t—v)dr, (1)
R
y(t)=‘ &hl(\'ywi(t'—'f)df. ) V)
{ml g
After carrying out Fourier transformation on both members of the equations,
we get
HEEIE
X5 LGy [Wz}' ©)]
= ‘ v, ,
Y=t Ha[y] . 0
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sl

In thene analytical expregnlons and the ones to follow, frequency dependence
lo not indleated lor the soke of breovity.

Let us set up the dlrect product of the two-component vector [X*], the complex
conjugate to vector [X], with its Hermitian conjugate [X¥]*, and then carry
out the operatlon of mathematical expectntion for both members of the re-
gultant equality end integrate it in the vieinity of the investigated fre-
quency, and as a result [Ref. 1] we get

[ Sxx sxm] __[ 1 ou]. Sww, 0 [ 1 Gm]
I.thl Sh.\'n B GM t 0 Sw,w. 021 1 ! (5)

.

vhere SXiXi is the spectral density of the observable signal xi(t); 5 is

XiX
the mutual spectral density of the observable signals x;(t) and xy(t); Swywy
is the spectral density of the unobservable signal wy(t); G4 is the frequency
response of the linear system that connects the i-th and j-th sources.

By analogous calculations we cen get the following expression for the spectral
density of signal y(t):

Sw. 21 0 H
Oy = [111 }{'-‘]‘ { ‘)u Su'.w: ] [ H: ] )

To study equation (5) we introduce a complete orthogonal basis system of
Pauli spin matrices

10 1 0] 01 0 i
°°=[o 1] "1:[0—1 v G =y 0]’ G“=[—i 0l"

The algebraic properties of the Pauli spin matrices are determined by the
following relations [Ref. 3]:

Oadp = =— GGy = iay,

where «a, B, y represent a cyclic permutation in (1)-(3),

(6))* = @y, =0,1,23, 6)
6,09 = Gg3; =2 0y U = 0, lv 2, 3)1 : . (7)
Sp(as) =25, (i,]=0,1,23), @8)

where 8p is the Spur of the matrix; Oy is the Kronecker symbol.

In matrix equation (5) the unknown quantities are the elements of the matrix
of spectral densities of the unobservable signals [Swin] and of the matrix
of frequency responses [Gij]'

Let us expand the matrices that appear in equation (5) with respect to the

complete system of Pauli spin matrices. With consideration of equalities
(6)-(8), the matrix of spectral densities of observable signals is written as
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3
(el = 5 ¥ Sian )

-()

where the S;= Sp(0)[Syy]) are Stokes parameters.
Introducing the notation
Gyg == oy - ioty,
for the matrix of frequency responses we get the expression

3
16} =5 Y B : | (10)

im0

where Bo==1; B, = 0; B, =, + foeg; Py = 0.

The matrix of spectral densities of observable signals can be presented as

3
[Sw,wll = %’ Z S/‘J/, (11)

=0
where 8, =38,=0.

Substituting expressions (9)-(11) in equation (6), we get
3 . 3 ‘e o 3 3
S S = 2 i 3 Sior 3 Buse. (12)
I=0 =0 J=0 ket

By using relations (6), (7), let us simplify the second member of equation
(12), end then by equating the coefficients before spin matrices with identi-
cal indices standing in the first and second members, we reduce this equation
to the following system

St 4+ =S SH-@+adl=S5,

2(1]30 = Sq. 2(1251 = Sa. - 4

Using the representetion of the complex frequency response G in trigono-
metric form '

(13)

Gu =q - I(lg = | GmlCOS(p-{- ilGu'Sin(P,

we get the following equations for determining the elements of frequency
response from system (13) when a; #0 and ap #0:

tgQ = SuSs(1 — | Gui [)/S:S2 (1 + | Gaa )y (14)
|Gual* + 241Gt +1 =0,

where

A = (SIS — S3S3 — 2S1S/(S1S] + SBS3).
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Tt

It can be simply shown that A satisfies the inequality A<l. This condition
implies that there is always a unique solution of equation (1h) that lies

in the interval between zero and unity. With the ald of the resultant
solution we get the opectranl densities of unobservable signals from (5)

Suwiwn = (Seury = | Gra [ Sxped/(1 — | G1a [*| Gar ')y

Sw:w: = (SX|XI = l 012 P SX!-‘I)/('l - | Gn I2 I Gn !i)‘
To determine the contribution of the first and second sources it is necessary
to find expressions for the frequency responses H) and Hy of the dynamic

system that connects the sources with the predetermined point of the acoustie
field.

From form (3) we get the following expressions for the Fourier transform ‘of
the observable signals:

W = (X, — G X)/(1 — Gy3Gay)y -
W, = (X, — G2 X)/(1 — Gy3Gyy). - (15)
Using formulas (4), (15) for the mutual spectral density of the observable
signal wi{t) and signal y(t) we get the expression
Suy = (sxw - G;ls.tw)/(1,"‘ G;ﬁa;l)"
Taking into consideration that H1‘=Sw1y/5w1w1s we finally write

(=100l 0 ) (Sgy — SaSew) | (16)
(so\'lh - I Gﬂ Ii sx,x‘) u - GnGu)

H)—"—‘

Analogously for Ho we get

(=101 Out ) (S5 = SisSi) (17)
(Sypey =Gt S (1 — GGy

Hy=

By using formulas (16), (17), frequency réesponses H; and H are expressed -
in terms of the spectral densities of the observable signals and the compu- =
tational values Gjjz.

Considering that the 'mobserveble signals are statistically independent,
the contribution of each source to the overall acoustic field is determined
from the formula

svuu = lAHIP Sw:“'l' B

It is easily established that the given method of localizing acoustic sources
is related to existing approximate methods, and specifically to the method
of residuasl spectra presented in detail in Ref. 1.

In accordance with this work, we have the following expressions for the
spectral densities of the observable signals:

2 .
Sx,x, = 2 ‘ Gll P Sw,wl' sxm = Gl‘lswtuh + GﬂlSWt"’l‘ . (18)
1=1
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With conslderation of relatlons (18), the coherence function of observable
signals is written as

'Y" = l GuSyu + G;lsk"nwl ".\ .
i (sw.w. + IG 12 |"‘ sw.w.’ (Su';w. + | a"‘-l I“ swluh)

As a resuit, for the residual spectrum of the observable signal x1(t) ve
get the expression

_SXIXI‘M = SJ.'|.\‘| (1 - ?1\&) = Swlw(Xh
where :
. 141Gyt G P — G1uGn — 0,0 B = Suww,
k=7 1+ |Gy P2 o Swaws

In this formula Gyp =Gp; is found from the solution of equation (1k). After
simple calculations it can be shown that the contribution of the source to

= the overall acoustic field as calculated by the method of residual spectra
Syy-x2 [Ref. 1], and the contribution Syy-w2 determined by the proposed

method are related by the expression

Syyws = x;lsw-x.-
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ON THE PROBLEM OF VIBRATION DIAGNOSIS OF TECHNOLOGICAL FLAWS IN ELECTRIC
MACHINES

V. A. Avakyan
- The main job in vibration diagnosis of electric machines is to establish the
reletion between the characteristics of the spectrum of vibrations of the

housing (measurable parameters) and technological flaws (diagnosed param-
eters) [Ref. 1-3].

Let us consider vibrations of an electric induction motor and use the model
of force factors and the model of isolated actions of flaws that were
. developed in Ref. 4: a force element that consists of Z; poles (balls) and
is characterized by the function Fo(¢) rotates relative to a stationary system
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with velocity wy and intermets with flaws Az(¢) of the rotor barrel and

- grooves of the rotating bearing rings (rotational veloelty is equal to wy), -

and also with flaws dy(¢) of the stationary rings and the stator. 'he orce

action of system Z, on a solid can be repregented by the funection F(%,’ ¢B)

(dp 2w, ¢y 2uwst) that permits spectral representation, Obviously the -

Fourier expansion here should be earried out in the complex reglon [Ref. 5].

The foree fields F,(¢,4) are nonlinear functio.s not only of angle ¢, but -
also of the depth of action A, which in turn is a function of the deviation
- of the shape that 1s due to the flaws. Expanding in a series with respect :
. to small quantitles A,, 4y, and leaving only the first terms, one can get
the foliowing expression of the complex amplitude Cp of the Fourier series
for frequencies KZw, in the case of lsolated actions of flaws:

' Ch v 280 (2) fe(p — 2)/27 =
= Zby ((KZe = 1)) fe(— JKZo)2n, Z=JKZc+p, p=—]

- )

: Now let us consider the case of simultaneous action of numerous flaws. As
the characteristic of the force field here it 1s necessary to take the
system of all poles Foy(¢) rather than the single pole Fo(¢) (flaws may be
multiple -- flat spots, waviness) and to represent them in a generalized way.
After a number of simple transformations we can get a generalized expression
for the amplitude of complex oscillations

Cr= 5(2) fez (S—2) lZa/k+0 pmei

= —Eéu (K = 1) fex (= IK). @)

It is difficult to give preference to any one of these approaches: Cg is
expressed more simply in (2) and corresponds better to the concept of
harmonics in Fourier analysis (for instance we can draw the conclusion

that only harmonics that are multiples of Z, show up ruther than any har-
moni.~), but this expression is more complicated in pracitcal use since it
requires a more complicated image of the force field; on the other hand,
expression (1) in many instances is much more convenient (for instance the
conclusion of appearance of harmonies that are multiples of Z, follows from
this expression automatically without any additional analysisg Therefore
expression (1) can be used for specific analysis of versions of simple inter-
actions, while generalized expression (2) can be used in the general case of
complex interactions.

We consider a typical spectrum first on the basis of the example of inter-
action of an isolated flaw 4y and the poles F, of fairly general form --

a sinusoidal half-wave; the flaw has width ﬂ/i, and the pole has width w/m,
where . and m are any positive numbers (integers or fractions). We represent
the Fouricr transform of the flaw as follows:

84 (jS) = 2c0s (nS/2)17Y(1 — S 'expl— ip(@u + 7/2)} =
= As (jS)expl— s (iS)1. @)
The flrst cofactor in (3) characterizes the modulus of the spectrum Ag(S),

and the sccond cofactor characterizes its phase ¢g(S) (which is more con-
veniently expressed in absolute frequencies). Let us note that (3) coincides
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with the expression for the same spectrum [Ref. 4] derived from cther initial
assumptions., ‘The spectrum of the pole fo(JS) is expressed also by formuia

(3) if ¢ is replaced by m and is assumed thot the phase shift of the flaw ¢y=0.
As implied by expression (1), the width of the vibration spectrum is de-
termined by the more extended element (pole or flaw), while the scale of its
amplitudes is determined by the product of dimensions (1/tm). 1t is easily
ghown that the shapes of the elements (rectangular, triangular, bell-shaped,
trapezoidul) do not have such an appreclable effect on the spectrum: the
product of the equivalent values of its width multiplied by the dimension of
an element is approximately constant for different shapes.

The phase spectrum of complex oscillations is not their essential character-
jgtic; it is much more important to determine the position of the axes of
the ellipses of vibration, i. e. the characteristics that can be determined
in vibrodisgnosis. It can be shown that the axis of the ellipse is directed
along the axis of the flaw independently of the dimensions and for all
harmonics. Calculation also shows that this direction is independent of
the shape of & flaw as well. In the general case the question of the direc-
- tion of the major or minor axis of the ellipse with respect to the axis of
the flaw requires more precise definition since some amplitudes (see formula
(3)) may take on negative values. The same thing applies to the case of &
zero value of one of the amplitudes, which corresponds to degeneration of
the ellipse to a circle. In this case of course we must change to analysis
on other harmonics.

= The validity of the theoreticel models has been repeatedly verified experi-
mentally. Diagnostic studies of the deterministic components of the vibration
spectra of machines were done with a narrow-band spectral analyzer of hetero-
dyne type with passband of 62 Hz at 3 dB attenuation. For exact measurement
of the frequencies of the discrete components of the spectrum and comparison
with the calculated values, the investigated signal was combined with the
signal from a tone generator, and then it was measured by a digital frequency

- meter. This brought the frequencies of the detected components into corre-

- spondence with thne calculated values within 0.5-1%., The vibration ellipses

were studied from the Lissajou figures displayed on the screen of an elec-

tronic oscilloscope by using signals from mutually perpendicular vibration

sensors.

. An example of & study of a vibration ellipse on the frequency of rotation
_ can be found in Ref. 1, where it is shown that in the case of one-sided
tightening of a bearing cover that leads to misalignment of the outer ring
of the bearing, the circular vibration field is deformed into an ellipse,
the major axis being directed along the axis of tightening (flaw).

An example of determining the nature of a flaw on the basis of measurement

) of machine vibration is described in Ref. 6, which gives the results of an

- experimental evaluation of the nonuniformity of an alr gap with accuracy that
{s fairly high for practice.
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SOFTWARE SYSTEM FOR CHECKING AND DIAGNOSING ELECTRIC MACHINES
V. A. Mailyan, G. A, Martirosyan, S. A. Sargsyan

The creation of an automated system for quality control of production in
sectors with mass production such as the production of electric machines in
a general industrial series cannot be realized without using automatic test
equipment controlled by a computer. For effective operation of the entire
system it is necessary that the automatic test equipment must operate in
real time. In this case the program software is complicated by the fact
that it must contain controlling, support and applied programs.

In this paper an examination is made of the problems of software for applied
Jobs, i. e. applied programs. The principal applied problems associated with
checking and diagnosis of electric machines are: checking the overall
vibration velocity (or vibration acceleration) in certain points of the
machine; analysis of the vibration state of the machine and recognition of
the sources of significant components of vibrations; determination of the
nonuniformity of the air gap; insulation strength tests; teking the loading
characteristic and determining the nominsl values from this characteristic
and the like.

In connection with such a considerable variety of problems, the applied
programs are implemented as blocks, both the number and content of the blocks
themselves being capeble of continued growth.
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Except for the last of the Jobs indicated above, all applied problems are
based on spectral analysis of vibrations, specifically the detection of
deterministic and random components and classification of the latter for the
purpose of vibrodiagnosis of the flaws of an electric machine. Therefore
this paper describes a complex of algorithms intended for realizing and
detecting sources of significant (in the sense of Ref. 1) vibration com-
ponenta.

The complex operates with a 1imited amount (only 512 readings) of input data
since it is time-oriented for information input to the Minsk-32 digital
computer via the Nairi-l digital computer.

Let us denote the vibrations of the housing of an electric machine by x(t)
and y(t). We will treat these processes as the resl and imaginary parts of

a complex process 2(t) =x(t) +1iy(t) and study its spectrum (Fourier transform)
in the complex plane in the form of vibration ellipses on which the flaw
detection technique developed in Ref. 1 is based. A vibration ellipse on &
given frequency is & hodograph of the vector-sum of two rotating (forward
and reverse) vectors whose moduli are defined in terms of the complex Fourier
coefficients of the positive Z(m) and negative 2(-m) frequencies of the
corresponding harmonic. The semimajor axis BMO'of the vibration ellipse

on the given frequency is |2(m)] +|2(-m)|, the semiminor axis is

MnO(m) = |} 2(m)| -ﬂZ(-m)Il, and the angle of inclination of the major axis of
the ellipse

Om = larg(Z{m)) + arg(Z(— m)))/2.

Obviously when one of the vectors Z is missing, the ellipse degenerates into
a circle, and when 2(m) and Z(-m) are close to the moduli the ellipse
degenerates into a line. Such a representation of the results of analysis

is associated with the fact that the ellipses are informative for diagnosis
since they enable evaluation of the nature of a flaw (rotating or pulsating,
i. e. a circle or an ellipse-line), its position (from the inclination of

the major axis) and dimension (from a "harmonic series" of ellipses) [Ref. 2].
The ellipses also characterize the degree of coherence (phase ratios) of the
vibrations along the X and Y axes.

Besides, to get the Fourier image of the functions Z(t) on a digital computer
it is convenient to use a fast Fourier transformation algorithm that is
desipned for a complex form of input data [Ref. 3, 4], i. e. it gives a gain
(in time) of calculations as compared with the fast Fourier transformation

of two harmonic oscillations.

Deterministic vibration ellipses are used for frequency recognition of flaws
that show up on frequencies determined by the corresponding kinematic equa-
tions [Ref. 2]. Recognition is realized by comparing the calculated fre-
quencies of the assumed flaws with the frequencies of the components found
in the vibration spectrum in a predetermined 5% interval.

1t should be noted here that while ellipses are quite informative for de-
terministic vibrations, they are physically unrealistic for random processes
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in the general case as there 18 no constant rate of turn of the vectors.
However, random vibrations are quite extensive, and there should be a spectral
model for them, On this basis, and retaining uniformity of approaches, we
will also study rendom vibrations in the complex plane and use an elliptical
model for them.

Let us note that for the two major forms of random vibrations -- narrow-band,
1, e. passing through the resonance of the electric machine, and coherent,

i. e. those for which the minor axis is negliglbly small in power compared
with the major axis -- the elliptical models correspond to rhysical reallity
and there 1s no need for mutuel spectral approaches.

Let us express the Fourier images of the processes with respect to axes X
and Y in terms of the Fourler coefficients of positive and negative fre-
quencies by the following formulas [Ref. 4]:

X (m) == [2(m) -+ 24N — m)1/2,
Y(m) = [Z(m)—2*N —m)))2}, m=0, N—1, )

where Z%(N-m) is the conjugate value of the Fourier coefficient of the
(N -m)-th harmonie, i. e. of the negative m-th harmonic of the complex
process (2(N-m)=2(-m)), N is the number of readings of the analog
proceus 2(t).

. Considering that for a complex process in the general case |2(m)] # |2(-m)],
let us use the notation 2(m)=a+Jjb, Z(N-m)=c+Jd. Bearing in mind that
a2 +b2 = |2(m)|2, end ¢ +d2 = |2(N-m)|2, ve easily get from (1)

21 X(m)P 4|V (m)P) = |Z(m) P + | Z(—m) %

The resultant equation implies that statistical averaging for lZ(m) 2 and
|2(-m) |2 does not differ from statistical averaging of |X(m)|2 and |¥(m)|2.

The angle ¢p at which the vectors Z(m) and Z(-m) meet (the angle of ineli-
nation of the ellipse) should be statistically averaged for classification
of random ellipses. 'The classification is done on the basis of the quantity

I [

§ = 3 M0 | 3 B0} ),
() -

vhere MﬂOf(m) is the square of the semiminor axis of the ellipse of the

m-th harmonic obtained on the i-th segment of realization; 1 is the number

of segments of realization.

The quantity S characterizes the resultant average ellipse obtained from
ellipses on the same frequency.

There is no rigorous mathematical basis for classifying ellipses with
respect to the parameter S, and therefore a clagsification is given below
thet is based on evaluation of the geometric parameters of ellipses of
powers.
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If 8320.5, the process on the given frequency is treated as circular, whereas
if 8> 0.9 -~ the process is classified as partly circular, and for cases
where 0.5¢3£0.9 the process is npproximately circular. On the other hand
if §5¢0.5 the ellipsen are taken as lines, and the process on the given
frequency is clasgsified with respect to the variance of the angle of incli-
netlon of the major axis of the average ellipse. When narrow ellipses have
sharply pronounced directionality, 1. e. they are concentrated in a very
narrow engle range (o(¢) £25°), the process on the given frequency is classi-
fied as coherent; if the ellipses are completely narrow, i. e. 820,25, the
process is taken as partly coherent, and if 0,25<¢8<0.5 -~ approximately
coherent.,

In the cagse where the angles of inclination of the axes of narrow ellipses
are spread over a wider range (0(¢)>25°), the process is classified as
uncorrelated in space, and in the range of 25° <o(¢) ¢ h0° the process is
taken as approximately uncorrelated in space, while at ol¢)>b40° it is purely
uncorrelated in space. Such a. classification of random ellipses gives an
jdea of random vibrations with respect to orthogonal directions in real

- machines.

The complex of algorithms developed is intended for analyzing vibrations of
electric motors and hand-held tools (up to three mechanical transmissions).

The results of the analysis are put out in the form of a table showing the
followirg information: the number of the harmonic, the (central) frequency
or band (in Hz) of the isolated component, the type of diagnosed flaw and the

. deviation from the design frequency (%), the equivalent residusl vibro-
stability, i. e. the square root of the residual power (mm/s), the ratio
MNOJBMO; IZ(m)l and |2(-m)| (mm/s); mathematicel expectation and mean square
value of the angle of inclination of the resultant ellipse, and the type of
process on the given frequency according to the accepted classification.
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